
SELF-CALIBRATION IN VISUAL SENSOR NETWORKS EQUIPPED WITH RGB-D
CAMERAS

Xiaoqin Wang, Y. Ahmet Şekercioğlu, Tom Drummond

ARC Centre of Excellence for Robotic Vision, Monash University, Australia

ABSTRACT

We consider the self-calibration problem (estimation of lo-
cation and orientation of multiple camera sensors), in visual
sensor networks equipped with RGB-D cameras. We propose
two algorithms based on feature matching and relative pose
estimation. First one uses Floyd-Warshall algorithm, and can
accurately estimate the camera locations. On the other hand,
the second algorithm is more scalable than the first one, and
can be used in large networks if high accuracy is not an issue.
Numerical results demonstrate that both algorithms, depend-
ing on the network topology, can be used for self-calibration
in RGB-D equipped visual sensor networks.

Index Terms— Self-calibration, visual sensor network,
RGB-D camera.

1. INTRODUCTION
Estimating the geometry of a visual sensor network (VSN)
from the captured image information only, i.e. self-calibration
[1, 2], is the prerequisite for many applications such as
surveillance and object tracking. Different from the con-
ventional VSNs, VSNs equipped with RGB-D sensors (e.g.,
Microsoft Kinect [3]), which enable capturing the color im-
ages with per-pixel depth information, provide fully 3D rep-
resentation of the environments and thereby allow enhanced
performance in conventional services and promise a wider
range of the innovative applications. Self-calibration for
VSNs with conventional cameras is a well developed area.
However, to the best of our knowledge, no research work
on self-calibration method for multiple RGB-D sensors has
been done. In this paper, we propose two self-calibration
algorithms for VSNs equipped with RGB-D cameras.

We consider scenarios where battery-powered mobile
RGB-D sensors [4] are deployed to monitor and map a target
region (an example is shown in Fig. 1). The interference
between sensors can be canceled using a “shake’n’sense”
approach [5]. Each sensor is able to communicate with each
other in ad-hoc manner. A central node with high perfor-
mance processor is also implemented in the network which
can operate computationally expensive algorithms. Due to the

This work was supported by the Australian Research Council Centre of
Excellence for Robotic Vision (project number CE140100016).

Fig. 1: A network of RGB-D sensors deployed to monitor and
map a scene in 3D.

limited communication bandwidth and battery-power supply
of VSNs, self-calibration in VSNs should take the energy
and bandwidth consumptions into consideration. Thus, we
intend to achieve self-calibration while minimize the amount
of transmitted information. The proposed self-calibration
methods consist of the following steps: (1) extract color fea-
tures at each sensor locally and send the descriptors of these
features to the central node, (2) perform feature matching
and generate a Feature Matching Matrix (FMM), (3) detect
neighboring sensors based on FMM, (4) estimate the relative
poses between neighbors and use selected relative poses to
calibrate the overall system. We formulate the selection of
relative poses as a shortest path problem, which consists of
finding shortest path from a vertex to the other vertices in a
edge-weighted graph that represents the sensors in the net-
work. In contrast to conventional self-calibration algorithms
for color cameras, our proposed algorithms determine sen-
sors’ locations and orientations in real world scale directly,
and so they do not suffer from the scale ambiguity problem.

2. RELATIVE POSE ESTIMATION (RPE)
The location and orientation of one sensor in the other sen-
sor’s coordinate system is called relative pose. The relative
pose of the RGB-D sensor b with respect to sensor a can be
represented by a transformation matrix, Mab , in SE(3),

Mab =

[
R t

0 0 0 1

]
, (1)

where R is a 3× 3 rotation matrix and t is a 3× 1 translation
vector.

There are various methods to estimate the relative pose
between two imaging sensors. In this paper, we adopt the

2289978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

Relative Pose Estimation (RPE) algorithm presented in one of
our earlier works [4]. This algorithm is specially designed for
RGB-D sensors and has robust performance with minimized
bandwidth consumption. It is an improved variant of Itera-
tive Closest Points (ICP) which operates between two RGB-D
sensors with overlapping FoVs. This distributed, peer-to-peer
algorithm determines the relative pose through explicit regis-
tration of surface geometries extracted from the depth images
captured by two sensors. More details about this approach
can be found in [4].

3. SELF-CALIBRATION ALGORITHMS

The RPE algorithm can be extended to operate in the circum-
stance with more than two sensors. For example, sensors a -
b, and b - c are two pairs of sensors with overlapping FoVs.
Sensor b’s pose in sensor a’s coordinate system can be de-
rived as Mab. Sensor c’s pose in sensor b’s coordinate system
is Mbc. Then, sensor a can determine sensor c’s pose as

Mac = MbcMab. (2)

In this example, sensor b is the intermediate node to determine
the relative pose between sensors a and b.

In order to accomplish self-calibration based on this ap-
proach, we first need to determine the sensors with overlap-
ping FoVs. Then, sensors are grouped in pairs to determine
the relative pose. At last, each sensor can obtain the geometric
topology of the whole networks.

3.1. Neighbor Detection

We define the sensors with overlapping FoVs as neighbors.
One sensor’s neighbors can be detected through comparing
observed color images based on matching features. There are
three steps involved for this process: feature detection, feature
description, and feature matching. The first two steps are op-
erated by each sensor locally. Taking both processing speed
and accuracy into account, we implement FAST [7] for fea-
ture detection and ORB [8] for feature description on every
sensor. Then, instead of transmitting the complete images,
each sensor sends the feature descriptors to the central node
to minimize the transmission load.

The central node performs feature matching between ev-
ery two sets of the feature descriptors. In order to match
image features more reliably and get rid of the mismatched
outliers, we adopt the symmetrical matching scheme and the
epipolar constraint between two views. In the symmetri-
cal matching scheme, the correspondences between two sets
of feature descriptors are established bidirectionally. One
group of correspondences is generated from matching the
first feature set to the second feature set. The other group
is produced from matching the second feature set to the first
feature set. For a pair of matched features to be accepted, two
features must be the best matching candidate of each other in

Table 1: FMM and NM of a network with three sensors.

FMM
No. 1 2 3
1 × n12 n13

2 n21 × n23

3 n31 n32 ×

NM
No. 1 2 3
1 × w12 w13

2 w21 × w23

3 w31 w32 ×

both directions. Then, we estimate the fundamental matrix
associated with the images by using the survived matches
and RANSAC [9] strategy. Ultimately, only the matches
which agree with the fundamental matrix are kept as the good
matches. An intuitive example of feature matching with and
without refinement process is shown in Fig. 2.

Fig. 2: Feature matching results: (a) without refinement, (b)
with refinement.

After conducting the above process on each two sets of
feature descriptors, a FMM can be constructed. As shown in
Table 1, FMM is symmetric with each element (nij) repre-
senting the number of matched features between the images
captured by sensors i and j. The diagonal elements repre-
sent the feature matching with itself, thus they are negligi-
ble. Let nmax represent the largest number of matched fea-
tures in FMM. By assuming the texture features are normally
distributed in the scene, the larger nij/nmax indicates bet-
ter overlapping in two sensors’ FoVs. Based on FMM and
criteria in Eq. 3, the Neighbor Matrix (NM) can be gener-
ated. Smaller wij indicates smaller uncertainty value in rela-
tive pose estimation between two neighboring sensors.

wij =

1 if nij/nmax ≥ 0.8
1.5 if 0.8 > nij/nmax ≥ 0.7
2.4 if 0.7 > nij/nmax ≥ 0.6
∞ if 0.6 > nij/nmax

(3)

3.2. Selection of Relative Poses

The RPE algorithm only introduces a small amount of uncer-
tainties and communication overhead when it is operated be-
tween two sensors. However, if two sensors require too many
intermediate nodes to determine each other’s poses, the accu-
mulation error will significantly influent the accuracy of the
result. In order to ensure each sensor has the reliable knowl-
edge of the other sensors’ locations and orientations, we re-
quire to select the relative poses which introduce the smallest
overall amount of uncertainties to calibration the system.

This problem is transformed to the all-pairs shortest path
problem. According to the NM, we can generate a sensor de-
pendency graph, G = (V,A), with sensors as the vertices.

2290

There is an edge between any two sensors iff they are neigh-
bors. The weight of the edge linking sensor i and j is wij ,
which indicates the uncertainty level in RPE. As NM is sym-
metrical, all edges is treated as bidirectional.

3.2.1. Method 1

We propose a method based on Floyd-Warshall algorithm to
determine the shortest path between every two vertices. In
the propose approach, we first generate Dist as a |V | × |V |
array of minimum distance and initialize Dist according to
NM. Then, we adopt Floyd–Warshall algorithm to determine
the shortest paths between every pair of sensors and update
Dist . However, in some circumstances, due to limited texture
features in the captured images, some sensors can be isolated
which cannot find its links to the other sensors. If more than a
certain threshold, γ, of the sensors are isolated, we will lower
the thresholds in Eq. 3 and operate Floyd–Warshall again.
Otherwise, we will link each isolated sensor to its principal
neighbor which has the largest number of matched features
with this isolated sensor and finds the shortest paths to the
other sensors, and then update Dist array. γ is influenced
by the environment and sensors’ poses. We set γ at 30%
for general cases. In some scenarios, some sensors do not
have enough overlapping area with any other sensors, then we
leave these sensors as isolated sensors. These isolated sensors
cannot be self-calibrated. At last, the central node will send
the information of linked sensor pairs to each sensor, and sen-
sors will operate relative pose estimation algorithm according
to the requests. The following summarizes the pseudo code
of the algorithm.

Algorithm 1 Method based on Floyd-Warshall Algorithm
I. Initialization Phase
1: Generate the sensor dependency graph, G = (V,A), based on NM. Let

Dist be a |V | × |V | array of minimum distance initialized according to
NM.

II. Decision Phase
1: while less than 1− γ sensors are linked do
2: operate Floyd-Warshall Algorithm
3: if more than γ of sensors are isolated then
4: lower the threshold in Eq. 3,

update NM and initialize Dist accordingly.
5: else
6: link each isolated sensor to its principle neighbor

and update Dist .
7: end if
8: end while

Though this method can detect the best path between ev-
ery two sensors, its disadvantage is obvious– due to the cycles
may exist in the graph, the relative pose estimation algorithm
need to run (|V | − 1)2/2 times for the worst case in which
each sensor estimates the relative poses of the others. So the
time complexity of the complete self-calibration scheme is
O(V 2).

3.2.2. Method 2

We now present another method which links sensors to form
a hierarchical tree structure. Different from method 1, this
method first selects a primary sensor as the root and then find
the shortest paths from the root to the other sensors. Thus,
each sensor can obtain the other sensors’ poses information
through searching according to this shortest-path tree.

Determining the primary sensor is a two-step process.
First, the sensors with the largest number of neighbors are
picked. Then, the sensor with the smallest average weight
among the picked sensors is set as the primary sensor. After
the primary sensor is selected, the shortest paths between the
primary sensor and the other sensors can be determined by the
central node. This single-source shortest path problem can be
solved by many approaches [10, 11]. In our method, we adopt
the A* search algorithm [12]. The remaining process is simi-
lar to method 1. The following summarizes the pseudo code
of the algorithm. The central node will send the information

Algorithm 2 Method based on shortest-path tree
I. Initialization Phase
1: Same as the initialization phase in method 1.

II. Decision Phase
1: while less than 1− γ sensors are linked do
2: select primary sensor, operate A* search Algorithm.
3: if more than γ of sensors are isolated then
4: lower the threshold in Eq. 3,

update NM and initialize Dist accordingly.
5: else
6: link each isolated sensor to its principle neighbor

and update Dist .
7: end if
8: end while

of the established shortest-path tree to each sensor. Then,
sensors will operate RPE algorithm according to the shortest-
path tree. A simple example of this working process is shown
below. Fig. 3 depicts a shortest-path tree of a network. Sen-
sors operate RPE algorithm to derive the relative poses Mab,
Mac, and Mcd according to the tree. By using these three
pose matrices, the relative pose between every two sensors
in the network can be determined. For instance, sensor d’s
location and orientation in sensor b’s coordinate system can
be derived as Mbd = MadMba = McdMacM

−1
ab .

a
b c

d

Fig. 3: Example of a shortest-path tree.

In this method, the RPE algorithm only requires to per-
form |V |−1 runs for the worst case. Thus, the time complex-
ity of the complete self-calibration scheme is O(V). Method
2 requires to operate RPE algorithm for a much fewer overall
number of runs than method 1. Therefore, method 2 incurs
lower communication overhead than method 1.

2291

10 20 30 40 50
0

100

200

300

400

Number of sensors in the network

A
vg

. n
um

be
r

of
 r

un
s

method 1

method 2

(a) Average number of runs that RPE algorithm processes

10 20 30 40 50
0.5

1

1.5

2

2.5

Number of sensors in the network

A
vg

. n
um

be
r

of
 in

t.
no

de
s

Method 1
Method 2

(b) Average number of intermediate nodes as a function of the
number of sensors

Fig. 4: Simulation results

4. EXPERIMENTAL RESULTS
We conducted both simulations and real world experiments
to evaluate performance of the proposed methods. In sim-
ulations, we compared the time complexity and the average
numbers of intermediate nodes required by two methods. In
experiments, we focused on analyzing the accuracy of two
methods.

We simulated different networks with increasing number
of sensors from 10 to 50. The sensors have random overlap-
ping FoVs. Two proposed methods were applied to realize
self-calibration of the networks. We evaluated the perfor-
mances of two methods through comparing the numbers of
intermediate nodes and the numbers of runs that the RPE al-
gorithm operates. The results presented in Fig. 4 are averaged
over 100 runs of the simulations with vertical bars indicating
the variance.

According to Fig. 4a, we can see that the average num-
ber of RPE algorithm runs required by method 1 increases
more significantly than method 2. It is because that each
sensor has more neighbors when the number of sensors in-
creases. Method 1 requires to estimate the relative pose be-
tween nearly every two neighbors to realize the optimal short-
est paths. While method 2 only need to operate RPE algo-
rithm for |V | − 1 runs. As shown in Fig. 4b, when the num-
ber of sensors increases, the average number of intermediate
nodes required by method 1 decreases, while this number of
method 2 increases. Because when the number of sensors
raises and the scene becomes crowded, sensors have more
neighbors and can estimate their relative poses directly with-
out intermediate node in method 1. However, the shortest path

tree constructed in method 2 becomes larger when the number
of sensors increases. Two neighboring sensors, which can be
the leaves with different parents, still have to use the root as
the intermediate node to determine the relative pose. So the
average number of intermediate nodes in method 2 increases.

In the experiment, we used the color and depth images
captured by an experimental VSN platform consisting of 7
RGB-D sensors. This platform is developed in Monash Uni-
versity’s Wireless Sensor and Robot Networks Laboratory
(WSRNLab) [4]. The color images captured by different sen-
sors are illustrated in Fig. 5a. The results of two methods are
presented in Fig. 5b and c. The groundtruth locations and ori-
entations are depicted as blue circles with line segments. The
estimated locations are shown as red crosses. The estimated
orientations are not shown in Fig. 5, as they make the graphs
messy and unclear. RMS errors of locations and orientations
estimated by method 1 are 4.19cm and 4.57◦. RMS errors of
locations and orientations estimated by method 2 are 5.20cm
and 6.72◦. RPE is performed 9 runs by method 1, and it is
operated 6 runs by method 2. We can see that the method
1 is more accurate than method 2. However, it requires to
operate RPE for a larger number of times and incurs higher
communication overhead.

Fig. 5: Real world experimental results.

5. DISCUSSION AND CONCLUSION

This paper is the first work which addresses the self-calibration
problem in VSNs consisting of RGB-D cameras. Two meth-
ods are proposed for networks with various requirements and
constraints. Though the second method cannot be expected
to achieve as good a performance (in terms of accuracy) as
the first method, it is more computationally scalable and does
not incur high communication overhead as required by the
first method. Application areas in which the sensor node
pose information can be used include 3D reconstruction,
image-based modeling, and multi-view object tracking.

2292

6. REFERENCES

[1] Shafique, K. and Hakeem, A and Javed, O. and Haer-
ing, N., “Self Calibrating Visual Sensor Networks”, IEEE
Workshop on Applications of Computer Vision, 2008, pp.
1,6.

[2] Kelly, J and S Sukhatme, G., “Visual-Inertial Sensor Fu-
sion: Localization, Mapping and Sensor-to-Sensor Self-
calibration”, Intl. J. Robotics Research, 2011, 30, pp. 56-
79.

[3] Han, J. and Shao, L and Xu, D. and Shotton, J., “En-
hanced Computer Vision With Microsoft Kinect Sensor:
A Review”, IEEE Trans. Cybernetics, 2013, 43, pp. 1318-
1334.

[4] “Wireless Sensor and Robot Networks Laboratory (WS-
RNLab)”, http://wsrnlab.ecse.monash.edu.au.

[5] Butler, D. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Hodges, S., and Kim D. “Shake’n’sense: reducing inter-
ference for overlapping structured light depth cameras”,
ACM Conf. Human Factors in Computing Systems, 2012,
pp. 19331936.

[6] X. Wang and Y. A. Şekercioğlu and T. Drummond, “A
Real-Time Distributed Relative Pose Estimation Algo-

rithm for RGB-D Camera Equipped Visual Sensor Net-
works”, ACM/IEEE Intl. Conf. Distributed Smart Cam-
eras, 2013.

[7] Rosten, E. and Drummond, T., “Machine Learning for
High-Speed Corner Detection”, Computer Vision-ECCV,
2006.

[8] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.,“ORB:
An Efficient Alternative to SIFT or SURF”, IEEE Intl.
Conf. Computer Vision, 2011, pp. 2564-2571.

[9] Fischler, M. and Bolles, R., “Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography”, Comm. of
the ACM, 1981, pp. 381-395.

[10] Dijkstra, E.,“A Note on Two Problems in Connexion
with Graphs”, Numerische Mathematik, 1959, pp. 269-
271.

[11] Dijkstra, E.,“On a Routing Problem”, Quarterly of Ap-
plied Mathematics, 1958, pp. 87-90.

[12] Hart, P. E., Nilsson, N. J., Raphael, B., “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”,
IEEE Trans. Systems Science and Cybernetics, 1968, pp.

100-107.

2293

