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ABSTRACT

This paper introduces a theory for max-product systems bjyan
ing them as discrete-time nonlinear dynamical systemsabey a
superposition of a weighted maximum type and evolve on nenli
ear spaces which we call complete weighted lattices. Speasas
of such systems have found applications in speech recogréts
weighted finite-state transducers and in belief propagatiographi-
cal models. Our theoretical approach establishes theaieseptation
in state and input-output spaces using monotone latticeatygs,
finds analytically their state and output responses usindimear
convolutions, studies their stability, and provides optirsolutions
to solving max-product matrix equations. Further, we apghbse
systems to extend the Viterbi algorithm in HMMs by addingtcoh
inputs and model cognitive processes such as detecting aodivi-
sual salient events in multimodal video streams, which shgaod
performance as compared to human attention.

Index Terms— nonlinear systems, multimedia signal process-
ing, lattices, minimax algebra, event detection, cogeitivodeling.

1. INTRODUCTION AND SUMMARY

Several successful algorithms in pattern recognition aadhime
learning are based on a max-product arithmetic. Examptgada
speech recognition using weighted finite-state transdu@®FSTS)
[32, 20], belief propagation in probabilistic graphical deds [3, 40],
and the maximum approximation used by the Viterbi decoding a
gorithm for likelihood scores during state estimation [38urther
in signal processing and control there are several estaoliareas
using max/min superpositions and related operations ofassgor
vectors; examples include (i) the max-plus convolutiok.¢a.dila-
tion) in morphological signal/image processing [18, 28,3 con-
vex analysis [26, 35] and optimization [1], (ii) the minimalgebra
used in scheduling [12], and (iii) the max-plus control isatete-
event dynamical systems [11, 23, 9]. Further, in multimadghal
processing for cognition modeling, which has been a mairivaot
tion for this work, several psychophysical and computati@xper-
iments indicate that the superposition of sensory signategnitive
states seems to be better modeled using max or min rulesbjyoss
weighted. Such an example is the recent work [15] on attentio
based multimodal video summarization where a (possiblglted)
min/max fusion of features from the audio and visual siginere
nels and of salient events from various modalities seemsuto o
perform linear fusion schemes. Finally, the sensory-sémarnte-
gration problem in multimedia signal processing requiresdn of
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two different continuous modalities (audio and vision)wdliscrete
language symbols and semantics extracted from text. Sigila
control and robotics there are efforts to develop hybridesys that
can model interactions between heterogeneous informatieams
like continuous inputs and symbolic strings [5]. In both bése
applications we need models where the computations amodglmo
ities/states can handle both real numbers and Boolearblesiahis
is possible using max/min rules.

Motivated by the above multimodal signal processing pnoisle
in this paper we develop some theoretical tools for the spration
and analysis of nonlinear systems whose dynamics evohedlas
the following state-space max-product model

x(t)
y(t)

wheret denotes a discrete time index,denotes maximumg(t) is
an evolving state vectow(t) is the input signal (scalar or vector),
y(t) is an output signal (scalar or vector), add B, C, D are ap-
propriately sized matrice& denotes the following nonlinear matrix
product with max-product operations:

ARzt —1) vV B(t) ®ul(t)
Ct)Rz(t) v D(t) Ku(t)

@

P=QXR, pi=\qi X1 (2

k

The state equations (1) are written for the case of timeingrgo-
efficients. If the matrices are constant and under zer@inibn-
ditions, the input-output relationship of (1) can be ddsedi by a
max-product convolution:

y(t) = (h@u)(t) = \/ u(k)h(t - k)

k

©)

whereh is the system’s impulse response. By replacing maximum
(V) with minimum (A) in (1) and (3) we can also obtairdaal model
that describes the dynamics of min-product systems.

Compare the above with linear systems [4, 6, 22, 17], which
deal with linear mapsx(t) = Axz(t — 1) + Bu(t) andy(t) =
Cx(t) + Du(t). There, all the matrix-vector products and signal
convolutions are linear, based on a sum-of-products aetitm

A max-product system is a special case of more general sgstem
studied in detail in [30], whose algebra is based on maximéis o
operations. Examples of ‘multiplicatios’ include the sum and the
product, butx may be only a semigroup operation. The resulting
algebras include thmax-plus algebrgR U {—oo}, max, +) used
in scheduling and operations research [12], discretetelygramical
systems [10, 11, 8, 9], automated manufacturing [23, 24,ah8]
max-plus control [10, 16, 7]; the min-plus algebra or elsevkn as
tropical semiring(R U {40}, min, +) used in shortest paths on
networks [12] and in natural language processing [32, 2@Jfuzzy
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logic semiring([0, 1], v, T") with statisticall’-norms playing the role
of fuzzy intersection used in fuzzy automata and neural[@8t21],
and fuzzy dynamical systems [31].

Our Contributions . (1) Developed a theory for max-product
systems analyzing both their dynamics in state-space aidnput-
output convolutional representation by using a new and poilve
class of underlying spaces, themplete weighted lattices (CWLs)
The detailed theory of CWLs is developed in [29, 30] to whioh w
refer the reader for all proofs. (2) Derived analytic foramilfor
computing the state and output responses of max-produeisgsas
well as for finding their input-output max-product convaduis, rep-
resented in both cases via lattice monotone operators imetitpn
pairs. Further, use the latter to generate optimal solstionsolving
max-product equation® X = b. (3) Studied various control-
theoretic issues of max-product systems. (4) Developelicagipns
of max-product systems that extend the Viterbi algorithrhidflen
Markov models (HMMs) to cases with control inputs and cair est
mate the saliencies of audio-visual events in multimoda¢wes with
good performance as compared to human attention.

2. BACKGROUND ON LATTICES AND OPERATORS

The background material in this section follows [2], [379], [18]
and [29]. A partially-ordered set, brieflyoset (P, <), is a setP
in which apartial ordering < is defined. If the ordering is total,
then we have ahain A lattice is a pose{( £, <) any two of whose

Dilations and erosions come in pairs as the following cohcep
reveals. The paite, (5) of two operators) ande on a complete
lattice £ is called aradjunction on L if

O(X)<Y =X <e(Y) VX, YeL @)

In any adjunction(¢,d), € is called theadjoint erosionof ¢,
whereag) is theadjoint dilationof . There is a one-to-one corre-
spondence between the two operators of an adjunction,, gihan

a dilationd, there is a unique erosion

e(V)=\{XeL£:dXx) <V}

such that(, §) is adjunction, and vice-versa.

From the composition of the erosion and dilation of any adjun
tion (6,5) we can generate an openig = O0€; since is an
opening, we havey(f) < f anda? = «. Dually, any adjunction
can also generate a closifiy= €0. Both of these are special cases
of morphological filters in [37, 18], a.k.adattice projections[29],
since they are increasing and idempotent.

©)

3. THEORY OF MAX-PRODUCT SYSTEMS
3.1. Weighted Lattices of Vectors and Signals
All elements of the vectors, matrices, or signals involvedhie de-

scription of max-product systems take their values frons#té =
[0, o] of nonnegative extended reals. We egkiipvith the follow-

elements have aupremum(a.k.a. least upper bound), denoted by ing scalar operations: (A) the standard maximum or suprewviam
X VY, and aninfimum(a.k.a. greatest lower bound), denoted by R, which plays the role of a generaliz&tidition’. (A") the standard

X AY. We often denote the lattice structure @, v, A). A lattice

minimum or infimumA onR. It plays the role of a generalizédual

L is completdf each of its (finite or infinite) subsets has a supremumaddition’. (M) the multiplication x extended ovej0, oo] which has

and an infimum inC.
Duality: In any lattice£, by replacing the partial ordering

1 as its identity and) as its null element, and distributes over any
supremum. (M) a‘dual multiplication’ x” which hasx as null ele-

with its dual <’ and by interchanging the roles of the supremumment, distributes over any infimum and coincides wition (0, co).

and infimum, we can form a new lattice called tiheal latticeand

The four above operations makean algebraic structure calletb-

often denoted by.’. To every definition, property and statement that dum(complete lattice-ordered double monoid) [27, 29]. We daa a

applies toL there also corresponds a dual one that applie® to

Examples of Complete Lattice&@) The chain of extended real
numbersR = R U {—o0, 400} equipped with the natural ordeg.
(b) Thepower setP(E) = {X : X C E} of an arbitrary sef”
equipped with the partial order of set inclusion where thgremum
and infimum are the set union and intersection. Kaehction Lat-
tices The set of discrete-time signafs: Z — R equipped with the
pointwiseordering<, supremum and infimum d.

Increasing Operators: Given two operatorg and¢ on a com-
plete latticeL we can definepointwisea partial ordering< be-
tween them, their supremung (v ¢) and infimum ¢ A ¢). Further,

define aconjugationoperation mapping bijectively each elemero
its conjugateelemen@ = 1/a = ™. This interchanges suprema
with infima; furthera x b = o™ x’ b~ In [0, o] the x and x’
operations coincide in all cases with only one exceptioa,rttulti-
plication of 0 with co. Thus, henceforth we shall use only one mul-
tiplication (x) and remember that the ca@ex oo will have value0
(resp. o) if it is combined with other terms via a supremum (resp.
infimum).

Consider the setV consisting of all nonnegative functiots :
E — K defined on an arbitrary nonempty détand taking values
in the clodumiC = [0, o). If we extendpointwisethe supremum

we define the composition of two operators as an operator-prod ¥ V G), infimum (F' A G) and scalar multiplicatiofa x F) for

uct: Ppp(X) 2

¥(¢(X)); special cases are the operator powersfunctionsF, G € W and scalara € K, the sedV becomes @om-

™ = Y"1, Some useful types and properties of lattice operafplete weighted lattice (CWIgver K. We can also have conjugation

tors ) include the following: (i) identity:id(X) = X VX € L.
(ii) extensive:y > id. (iii) anti-extensivex) < id. (iv) idempotent:
P2 =1,

A lattice operatory is calledincreasingif it is order-preserving,
i.e. X <Y = ¢(X) < 9¥(Y). Fourimportant types of increasing
operators are the following:

disdilation iff AV, X:) =V, 0(X:)

giserosion iff (A, X:) =N\, €(Xq)
«isopening iff «isincreasing, idempotent & anti-extensive
5 isclosing iff ﬁ is increasing, idempotent & extensive

The four above types of lattice operators were originallfiresel in
[37, 18] as generalizations of the corresponding standangpino-
logical image operators.
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of functions by definingF(t) = 1/F(t). The axioms of CWLs
bear a remarkable conceptual similarity with those of lirgzaces
as analyzed in in our recent work [29, 30]. We focus on two spe-
cial cases: (i) IfE = {1,2,...,n}, thenW becomes the set of all
n-dimensional vectors with elements frdt (i) If £ = Z, thenW
becomes the set of all discrete-time signals with valuas fto

On linear spaces, a linear syst&hobeyslinear superposition:

On a CWL the conceptually analogous superposition wouldobe t
have system8 that obey a max-product superposition:

(S(\/QFl) :\/cid(Fi), (7)



This means thad is both a dilation and invariant to vertical scalings Theorem 2 A signal operatorA is a DTI system iff it can be rep-

(in short V-scalings) of signals () — aF(t). We calld adilation
V-scaling invariant (DVIsystem.

CWL of vectors: Consider now the CWL vector spad® =
K™, equipped with the pointwise partial orderimg< y, supremum
xVy = [z; Vys], infimuma Ay = [z; Ay;], and scalar multiplica-
tions of vectors . On finite-dimensional linear vector sgageector
map is linear iff it can be represented as a linear produatden
the system’s matrix and the input vector. Similarly, we hgliewn

that on the CWLW a map is DVI iff it can be represented as the ~ ®(t2,t1) = {

max-product between the input vecteand the matrixV = [m;]

resented as the max-product convolution of the input sigitél the
system’s impulse responide= A(q).

3.2. State and Output Responses
Based on the state-space model of a max-product dynamisi@nsy
(1), we can compactly express its state response and oegpdnse
if we know itstransition matrix

A(tz)‘g“-gA(tl +1) if
I, if

to >t

by =1, (13)

with m;; = {0 (v;)}i, wherewv; are basis vectors. This map is a for ¢tz > t1, wherel, is then x n identity matrix. By using in-

vector dilationd as () = M Rz . Its adjoint vector erosion, so that
(&, (5) is an adjunction, can be shown to equal [30]
M* 2D

E(y) =M "K'y, 8

whereM* 2 [m;l] is theadjoint matrixof M = [m,;], andX’
denotes thenatrix min-product namely,P = Q X’ R with p;; =
Ay @ixTr;. This adjunction helps us solveax-product equations

ARz =0 9)

Often (9) does not have an exact solution, in which case we ¢

find an optimum approximate solution by solving the follog/iton-
strained minimization problem:

Minimize |[|AXx — b||

subjectto AR x < b (10)

where|| - || is either the/ or thel; norm.
Theorem 1 (a) The vectorr = A* X' b is a solution to (10).
(b) If Eq. (9) has a solution, thed is its greatest solution.

Our method for solving (10) is to consider vectasthat are
sub-solutionsn the sense thatl X «# < b and find the greatest
such sub-solution using adjunctions. The set of sub-swiatforms
a semigroup under vectorwhose supremum equaits which yields
either the greatest exact solution of (9) or an optimum apprate
solution in the sense of (10). This adjunction-based smiutreates
a lattice projection via the openini(e(b)) < b that best approxi-
matesb from below.

CWL of signals: Consider the se¥V of all discrete-time sig-
nals f : Z — K with values fromK = [0, oc]. Equipped with
pointwise supremunv and infimumA, and pointwise scalar mul-
tiplications, this becomes a complete weighted latticee $ignal
translations are the operators. ., (f)(t) = vf(t — k). A signal
operator on\V is calledtranslation invariantiff it commutes with
any such translation. This translation-invariance caorgtioth a ver-
tical translation and a horizontal translation which iswrel-known
time-invariance Now, if ¢(¢) is theimpulse equal tol att = 0

and0 elsewhere, every signdl can be represented as a supremum

of translated impulses

F) =\ fk)q(t — k) (11)

Consider now operatorA on W that are dilations and translation-
invariant in the above sense. Theh,is both DVI in the sense of
(7) and time-invariant. We call such operatdikation translation-
invariant (DTI) systems. ApplyingA to an input signalf decom-
posed as in (11) yields the output as the max-product cotigal®

of the input with the system’s impulse resportse: A(q):

A(N)E) = (FRh)(E) =\ f(k)h(t - k) (12)
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duction on (1), the state and output responses of the timgnea
nonhomogeneous system can be foundt fer0,

@@mxmmv<v¢@nx3@®um>M)

=1

C(t) R d(t,0)Rz(0) Vv D(t) K u(t)

V<QC@®¢@O®B@&u@> (15)

i=1

The zero-state part @f is atime-varying max-product convolution

aj matricesA, B, C, D are constant, the state equations become:

x(t)
y(?)

and ®(t2,t1) = At271) where A®) denotes the-fold max-
product of A with itself. By representing the matrix-vector max-
product as a dilation operatar — d a(z) = A X , the solutions
of theconstant-matrix state equatiobgcome

ARz(t—1) v BRu(t)

CRa(t) v DRult) (16)

z(t) = Oale)] v (V' _ 04 dsui)) (7)
) = Sc8alz(0)] v (\/_ Jcds Snluli)]) v Iplu()
%/_/ 3

zero-input resp. y..(t) £ zero-state resp.
Thus, the output response is found to consist of two parjsthéi
zero-input response which is due only to the initial comdisia(0)
and assumes a zero input, and (ii) the zero-state resporish ish
due only to the inputs(t) and assumes zero initial conditioa$0).

For single-input single-outpusystems the mapping(t) —
y=s(t) can be viewed as a translation invariant dilation systsm
Hence, the zero-state response can be found as the maxepcodu
volution of the input with the system’s impulse respohse A(q).
The latter can be found from the general output by settintiaini
conditionsz(0) = 0 and the input(t) = ¢(t):

t=0

t>1 (18)

D7
M”_{C&Amxa
The previous results allowed us to address and solve in [80] v
ious important control-theoretic problems for max-pradsystems,
such as their stability, controllability and observalilitWe outline
next the stability result. A useful bound for signglg) processed by
such systems is their supremal vaN/fe f(t). We call max-product
systems bounded-input bounded-output (BIBEgbleiff an upper
bounded input yields an upper bounded output, i.e. if

\/u(t) < oo=>\/y(t) < o0

t t

(19)

Since all signals involved are nonnegative, the above diefinof
sup-stability coincides with their absolute stability.



Theorem 3 Consider a DTI systemh and leth = A(g) be itsim-  the movie video. If a frame is annotated with N-labels (e 4u-*

pulse response. Then: (a) The system is causaliff = 0 for all dio” and “Audio-Visual”), we search in the N-best state gathn

t < 0. (b) The system is BIBO stable \ff, h(t) < cc. Table 1 we present our evaluation results on a movie videa¢G
iator’) from the MovSum database [15]. We also see the aeerag
performance over six movies from various film genres. Ouwiltes

4. HMMS EXTENSIONS AND APPLICATIONS TO using the max-product dynamical system are encouragingess t
DETECTING MULTIMODAL SALIENCIES can estimate monomodal or multimodal audio-visual saksents

more accurately than GMMs or the bottom-up feature-badeii

hoods and can improve with higher-level control inputs. yrakso

outperform HMMs. In Fig. 1 we see an example of our system evo-

lution. Note that in most cases the human-annotated saiemtts

are included in the best state paths found by our system.

Assume a video sequence of audio-visual events each to bedsco
with some degree of saliency i, 1] where ‘saliency’ is some
bottom-up low-level sensory form of attention by a humancivatg
this video. The states;, z2, x3, x4 represent time-evolving mono-
or multi-modal saliencies, where 1=audio, 2=visual, 3Fawidual,

and 4=non-salient. _ Peaks in these sali.ency trajectonigsfgiim- GV Likelihoods Bottom-Up (8U) Likelhoods
portant events, which can be automatically detected andupe GMM || HMM Variant MPDS BU|| HMM Variant MPDS
video summaries that agree well with human attention [15ﬂ1e T |State Prod.| Min | Max || Prod.| Min | Max Prod.| Min | Max || Prod.| Min | Max
following state equations are a possible time-varying mpeoduct |5 S ARTIE (8 A
dynamical model we propose for the evolution of these saikéan Y, 50 1 62 126 53 75 155 56 6ol 60 |87 | 52 62 |66 | 7o
None 56 56 | 43 | 46 52 | 28| 45 || 44| 44 | 11| 42 42 | 37 | 46
4 4 Aver.(AV,Av) 61 60 | 49 | 54 69 | 58 | 56 || 47 || 47 | 55 | 42 62 | 64 | 56
t) = \/ ai;z;(t—1) | xpi(t) V \/ biju;(t) (20) [6Movies [ 65 [ 65 [53[ 58 68 [67 ] 60[[58] 58 [64] 54 [ 65 [ 65] 64 ]

Table L F—scores(F;c}WE =Pl on + R, ) for the HMM Variant
and the Max-Product Dynamic System (MPDS) using either theVGesti-
mated or the bottom-up likelihoods. For the operatiowe have employed

three different versions: product, minimum and maximum.

for statei = 1,2, 3,4. The constants;; represent state transitions
probabilities andp;(¢) denotes the probability of state (¢) being
salient based on observed measurable low-level featuterges; .
We assume that the parameters andp; (¢) are given. The opera- ‘ ‘ ‘ ‘ ‘
tion x must distribute ovex and can be a product, min or max. 3rd Best State Path = mmm—mm——
Assume first thak is the product. Given a time SeqUENCe 07 o e B e oo
observationgoo, o1, ..., 0¢) one can fit HMMs to these data using
maximum likelihood [34]. Then, the first term in the RHS of Y20 . man Annotations” N L R
models the evolution of the Viterbi dynamic programming 2R

gorithm used in automatic speech recognition with HMMs fpf o ' T Uikelnoods .

timal state estimation, if we initialize d@t = 0 the four states by Audio-Visual

settingz; (0) = m;p;(0) wherer; denotes the probability of the sys-

tem being at theth state at = 0. For example, if the inputs; (¢) 05F ‘

are all zero, then the single outpuytt) = \/, z:(t) computes the

Viterbi score, which is the probability for having obsentbe data m

(00, ..., 0¢) and the HMM hav_ing passgc_j through the optjmum stat 'ﬁd’l\»ﬂ uﬂ»‘\ Mt} b% JhJAVLMI\
sequence (that maximizes this probability). Our syster i&thore i 500 1000 1500 2000 2500 3000
general than the Viterbi algorithm from which it differs ihet fol- Frames

lowing aspects: 1) we have the probability-like signajét) which Fig. 1. Evolution of audio (blue), visual (red) and audio-visugreen)
can act agontrol inputscoming possibly from higher-level events bottom-up likelihoods. We also see the human annotatiodsttzs 3-Best
(e.g. detected human faces, presence of speech in the audibgr ~ State paths using the Max-Product Dynamic System (MPDS) prioduct
semantics). 2) the outputs of the dynamical system can beugar ©Peration. (This figure is best viewed in color.)
min-max combinations of the saliency states of various Hitieka
3) the operatior may be different than the product (which makes 5. CONCLUSIONS
the system an HMM if the inputs are zero). For example, itaab We have developed a theory for max-product systems baseahon ¢
minimum or a maximum. plete weighted lattices. Results of the theoretical amalylude

In our experiments, for estimating the observation datdg@ro analytic formulae for their state and output responses,-pnagduct
bilities p; (¢t) we have followed two different approaches. In the first, convolutions connecting inputs with outputs, and study aftol-
we fitted Gaussian mixture models (GMMs) to audio and viseal f theoretic issues. Further, we have applied max-produdesys
ture vectors extracted from the video data at each frami the  to extend the Viterbi algorithm in HMMs to a more general sce-
other, we used bottom-up likelihoods by fusing saliencieh®@ au-  nario that allows for high-level control inputs in additida the
dio and visual streams measured from monomodal cues as]in [150bservations. This control-based new version of HMMs was ap
We have also used high-level control inputs, i.e. autonfatie de-  plied to estimate audio-visual saliency states in multialaddeos.
tection [39] and speech activity detection (VAD) [14]. Iretbase  Comparisons between the results of the max-product system a
of GMMs we estimated the state transition probabiliies using  human-annotations on movie videos yielded promising tedat
the EM algorithm on some training data from movie videos.hie t automatically detecting salient events. Our ongoing ataréuwork
case of bottom-up likelihoods, the probabilitieg were set equal to  in this area includes a further study of the relationshipveen the
1/4 plus a penalty at the diagonal elements For the salient event max-product dynamical systems and HMMs and development of
detection we keep the best state path (the state sequentastthe  approaches for estimating the max-product system parasnabel
highest probability) and compare it with human annotatifrom state from observed data.
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