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ABSTRACT 
 

With the increasing use of audio sensors in user generated content 

collection, how to detect semantic concepts using audio streams 

has become an important research problem. In this paper, we 

present a semantic concept annotation system using sound-

tracks/audio of the video. We investigate three different acoustic 

feature representations for audio semantic concept annotation and 

explore fusion of audio annotation with visual annotation systems. 

We test our system on the data collection from HUAWEI Accurate 

and Fast Mobile Video Annotation Grand Challenge 2014. The 

experimental results show that our audio-only concept annotation 

system can detect semantic concepts significantly better than 

random guess. It can also provide significant complementary 

information to the visual-based concept annotation system for 

performance boost. Further detailed analysis shows that for 

interpreting a semantic concept both visually and acoustically, it is 

better to train concept models for the visual system and audio 

system using visual-driven and audio-driven ground truth 

separately.  
 

Index Terms—Semantic Concept Annotation, Video Content 

Analysis, Audio Concept Analysis 

 

1. INTRODUCTION 

Current boom of user-generated content (UGC) on the Internet has 

attracted tremendous research interest in developing automatic 

technologies for organizing and indexing multimedia content [1]. 

The TRECVID annual evaluation organized by NIST has been an 

important benchmark [2]. With the increasing use of audio sensors 

in UGC data, semantic concept annotation using audio streams has 

become an important research problem. The audio information 

within the video can be very useful to detect semantic concepts, 

especially when the objects are hidden behind the camera and not 

appear in the visual content.  

HUAWEI organized a grand challenge in the International 

Conference on Multimedia & Expo (ICME) 2014: HUAWEI 

Accurate and Fast Mobile Video Annotation Challenge [3]. The 

goal of this task is to analyze UGC videos and annotate their 

contents automatically. The labels to be annotated are 10 semantic 

concept classes, covering objects (e.g. “car”, “dog”, “flower”, 

“food” and “kids”), scenes (e.g. “beach”, “city view” and “Chinese 

antique building”) and events (“football” and “party”). The 

semantic concept annotation within the HUAWEI challenge is 

required to be at the frame-level. That means for each frame, we 

need to make a binary decision about the presence of a specific 

concept in the frame. Comparing to the semantic concept 

annotation task at the video level or supra segmental level in 

previous research, this task requires annotation with finer 

resolution and is a more challenging task. In this paper, we focus 

on detecting semantic concepts within UGC videos at frame level 

using audio information. We also investigate fusion of audio and 

visual annotation systems for additional performance improvement. 

Last but not least, we conduct further detailed analysis about how 

to best detect a semantic concept acoustically and visually.  

The remainder of this paper is organized as follows. Section 2 

presents the related work. Section 3 introduces the audio concept 

annotation system. Section 4 presents baseline experimental results. 

Section 5 presents further analysis and experimental results. 

Section 6 concludes the paper and describes potential future work. 

 

2. RELATED WORK 

The most related works are in soundtrack analysis and audio event 

classification. We summarize the previous research work from the 

following three focuses: (1) Number of sound classes. Much early 

works focused on detecting or distinguishing between a small 

number of sound classes such as speech, music, silence, noise, or 

applause. This was solved using various traditional machine 

learning and signal processing approaches [4-7]. (2) Quality of the 

audio data. Early work on audio event classification was largely 

done on sound databases [4] and clean broadcast or television 

program audio data [5]. Typical high quality database or broadcast 

data can be extremely clean, and “foreground” sounds are 

generally easy to distinguish from “background” sounds. The 

growing popularity of video sharing services such as YouTube, 

Dailymotion, Youku and Tudou in China etc. enables the vast 

increasing of user-generated videos. Analyzing such consumer 

videos is more challenging. (3): Granularity of the audio 

processing. We can roughly categorize the soundtrack analysis 

work into two categories: sub-soundtrack classification or entire 

soundtrack classification.  Distinguishing between a small numbers 

of sound classes can be considered as a sub-soundtrack 

classification problem. It produces annotations of input data 

according to a fixed number of classes for which one has trained 

models. There also have been efforts to classify short audio clips 

with respect to the environment in which they were recorded [8]. 

The multimedia event detection (MED) using soundtrack is the 

entire soundtrack classification problem [9]. Modeling the event 

based on sub-soundtrack classification results has been one type of 

approaches in such tasks [9, 10]. Though the semantic indexing 

(SIN) task in TRECVID [2] has a subtask of localizing concepts on 

frame-level since 2013, we have not noticed any work that have 

used auditory method to help achieve the goal. Similar to the SIN 

subtask, the HUAWEI grand challenge can be categorized as a 

sub-soundtrack classification problem. 
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3. AUDIO ANNOTATION SYSTEM DESCRIPTION 

Our semantic concept annotation system using audio information 

only contains the following key components as shown in Figure 1: 

audio data pre-processing, audio feature extraction, concept 

annotation models and post-processing. 

Figure 1. System Components 

Pre-processing. In order to detect concept on frame-level, we 

chunk the audio stream into small segments with overlap (exp. 3-

sec window and 1-sec shift), extract audio features and apply 

concept detection on those segments.  

Audio Feature Representations. We explore different audio 

feature representations for concept annotation in this paper.   

Bag-of-Words (BoW) features: The codebook model is a 

common technique used in the document classification (bag-of-

words) [11] and image classification (bag-of-visual words) [12]. 

The similar bag-of-audio-words model has also been applied in the 

sound track analysis work [13-14]. In our system, we use bag-of-

audio-words model to represent each audio segment by assigning 

low-level acoustic features to a discrete set of codewords in the 

vocabulary (codebook) thus providing a histogram of codewords’ 

counts. These codewords are learnt via unsupervised clustering. 

The discriminative power of such a codebook is governed by the 

size of the codebook and by the assignment of features to 

codewords [7]. In this paper we apply this model to the low level 

MFCC features. The MFCC features are computed every 25ms 

with 10ms shift and are in 39 dimensions (13MFCC + 13delta + 

13ddelta). The codebook is learnt by applying kmeans clustering 

algorithm with K=4096 on the whole training dataset. Each audio 

segment is then represented as a distribution over these 4096 

codewords’ by using soft-assignment (by adding the closest 5 

codewords’ count) of MFCC features to these codewords’.  

BoW+TF-IDF features: In the previous feature representation, 

when we calculate the bag-of-audio-word features, we only 

consider the hard counts of each codeword (as term frequency). 

Some codeword may be common noise that may not be useful in 

classification. Therefore we consider using the term frequency–

inverse document frequency (tf-idf) method to eliminate the 

influence of such noises, similar to the work in [15-16]. For each 

codeword, we calculate its inverse document frequency in the 

training set and then multiply it with the original term frequency in 

all the dataset and get the IDF-bag-of-audio-word features. 

Gaussian Super Vector Features: Instead of the bag-of-audio-

word representation, we experiment another method to represent 

low-level MFCC features. Gaussian supervectors (GSV) have been 

successfully used on the speaker verification task [17]. A GSV is 

constructed by stacking the means, diagonal covariances, and/or 

component weights of the mixture model. We first trained a 

universal background model (UBM) by sampling audio from the 

training set. To generate the GSV feature representation for each 

audio segment, we first MAP adapt to the UBM based on the 

MFCC features extracted from this segment and then create a super 

vector by concatenating the means of each Gaussian component in 

the adapted GMM.  

Concept Annotation Models. After we extract the audio features, 

we train two-class SVM classifiers for each of the 10 concepts. As 

the training data is overwhelmed by negative examples (Table 1), 

we train classifiers with the Negative Bootstrap algorithm [18].  

The algorithm takes a fixed number (N) of positive examples and 

iteratively selects negative examples which are most misclassified 

by current classifiers (N=3000 in this paper). The algorithm 

randomly samples 10xN number of negative examples from the 

remaining negative examples as candidates at each iteration. An 

ensemble of classifiers trained in the previous iterations is used to 

classify each negative candidate examples. The top N most 

misclassified candidates are selected and used together with the N 

positive examples to train a new classifier. In order to improve the 

efficiency of the training process, we use Fast intersection kernel 

SVMs (FikSVM) as reported in [19].  

Post-processing. Intuitively, if a concept occurs within a video, it 

is usually not an instantaneous appearance. It normally lasts for 

certain duration. Therefore, we conduct boundary padding and 

cross-segment smoothing over the raw annotation results. We 

expand the beginning and ending of the detected segments. We 

also merge two detected segments if they belong to the same 

concept and the gap between them is below a certain threshold 

(padding=3sec, gap threshold=3sec in this paper).  

 

4. BASELINE EXPERIMENTS 

4.1 Database Description 

The HUAWEI dataset contains 2,666 UGC videos with frame-

level ground truth provided for ten concepts. The video resolutions 

and frame per second (fps) vary among all videos. We divide the 

dataset into a training set (1300 videos), a development set for 

tuning model parameters and fusions weights (477 videos) and a 

test set (886 videos). The ground truth label files provide the exact 

frame index of each concept that appears within videos. Table 1 

shows the total number frames of positive and negative examples 

for each concept. The amount of negative examples is 

overwhelmingly larger than the amount of positive examples. 

 

Table 1: number of frames for positive and negative examples  

Concepts #pos frms #neg frms %pos 

beach 664793 9340147 6.6% 

car 1157352 8847588 11.6% 

ch_bldg 772805 9232135 7.7% 

city view 801583 9203357 8.0% 

dog 520744 9484196 5.2% 

flower 1082986 8921954 10.8% 

food 378046 9626894 3.8% 

fb-game 1604012 8400928 16.0% 

kids 1525771 8479169 15.3% 

party 780240 9224700 7.8% 

 

4.2 Baseline Experimental Results 

We use the average precision to evaluate the concept annotation 

performance for each concept class: 

𝐴𝑃 =
1

𝑅
∑ 𝐼𝑗 ×

𝑅𝑗

𝑗

𝑛
𝑗=1                              (1) 

where R is total number of  relevant segments of that concept, n is 

the total amount of segments, Ij=1 when the jth segment is relevant 
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otherwise Ij=0. Rj is the number of relevant segments in the first j 

segments.  

Table 2 shows the baseline results with the three different 

feature representations. The Audio annotation system with BoW 

features yields 29.8% of mean AP over all 10 concepts, 28.8% 

with BoW+TF-IDF features, and 29.7% with GSV features. From 

the results, we can see that the concept annotation based on audio 

only achieves significantly better performance than random guess. 

The system with BoW+TF-IDF features does not get any gain over 

BoW features, which indicates that adding inverse-document-

frequency at the feature level does not help. We suspect that the 

SVM classifier may already compensate the inverse-document-

frequency implicitly. We then fuse the three audio annotation 

baseline systems via late fusion. We use a coordinate ascent 

algorithm [20] to find the optimal fusion weights on the 

development data and apply them on the test data.  The fusion of 

three baseline systems achieves additional improvement (boost 

mean AP to 33.6%), which shows the three different audio features 

are complementary at certain level. We also conduct pair-wise 

fusion between any two of the three baseline systems; their 

performance is comparable but slightly worse. From the results, we 

can also see that some concept classes, which are acoustically easy 

to distinguish such as “football game”, “dog”, “kids”, “party” 

clearly achieve much better performance than others (with AP of 

75.3%, 47.8%, 47.1%, and 36.9% respectively). 

Since significant semantic information is conveyed in the 

visual stream, we also develop the concept annotation system using 

visual information (SVM classifier of same structure as in audio 

system trained with 1x1+1x3 SIFT BoW features). Intuitively, the 

audio and visual streams contain complementary information for 

interpreting a semantic concept. We therefore explore to combine 

the fused audio system and the visual system. As shown in Table 2, 

although the visual system achieves much better performance than 

the audio system, combining them achieves improvement over all 

of the 10 concept classes. On average the fusion of audio and 

visual system achieves a relative improvement of 13.6% over mean 

AP (boost mean AP from 63.2% to 68.2%). The fusion weight 

assigned to the audio system is listed in the last column in Table 2.   

Table 2：Baseline concept annotation system performance 

Concept 

BoW 

Audio 

Sys 

Tf-idf 

Audio 

Sys  

GSV 

Audio 

Sys 

Audio 

Fusion 

Visual 

Sys 

Audio 

& 

Visual 

fusion 

Audio 

fusion 

weight 

beach 12.2% 11.8% 14.8% 15.2% 60.3% 61.9%  0.2  

car 25.9% 26.0% 26.0% 28.3% 65.5% 66.1%  0.1  

ch-bldg 18.4% 17.1% 16.7% 22.2% 65.1% 68.6%  0.3  

cityview 21.5% 20.2% 18.8% 23.2% 57.2% 60.5%  0.3  

dog 46.0% 44.5% 46.4% 47.8% 49.7% 66.3%  0.5  

flower 27.8% 27.2% 26.2% 31.8% 74.6% 76.9%  0.2  

food 7.3% 7.3% 7.6% 8.6% 46.4% 46.7%  0.3  

fb-game 71.5% 71.3% 69.4% 75.3% 97.3% 97.9%  0.3  

kids 41.7% 39.4% 37.4% 47.1% 38.3% 56.6%  0.6  

party 25.2% 23.2% 33.5% 36.9% 77.5% 80.9%  0.6  

Average 29.8% 28.8% 29.7% 33.6% 63.2% 68.2% - 

 

5. FURTHER DETAILED ANALYSIS 

We inspect baseline results in detail and notice that in some test 

videos the system detects certain acoustically salient concepts but 

they are not labeled in the ground truth. For example, for a 

segment in the video tr0209.mp4 with kids talking behind the 

camera about the chicken pacing in the front, audio-only system 

successfully detects “kids”, while the ground truth file does not 

label such concept. This indicates that the ground truth is generated 

mainly based on the visual evidences. Therefore much audio 

semantic content is left out in the HUAWEI UGC data collection. 

However, for a semantic concept that can relate to both visual and 

acoustic evidences, when the visual system fails to detect, audio 

annotation system will be the best solution. We therefore come up 

with the following additional experiments and analysis. 

 

5.1. Audio-driven Concept Ground Truth 
 

As we look more closely into the ground truth files, we believe that 

the provided manual labels are based on visual content. For 

example, the videos with dog’s image in the foreground and kid’s 

talking behind the camera are only labeled with “dog” but no 

“kids”. In order to further investigate semantic concept annotation 

from both audio and visual point of view, we need consistent 

ground truth with both audio and visual evidences. We therefore 

choose 6 acoustically salient concepts (kids, football-game, dog, 

party, car, beach), and hand label the whole dataset by listening to 

the sound tracks without looking at the videos to generate the new 

audio-driven semantic concept ground truth. We compare the 

original visual-driven ground truth and the new audio-driven 

ground truth in Table 3. The “Visual” and “Audio” columns show 

the number of frames labeled as each concept in the original 

visual-driven ground truth and the new audio-driven ground truth 

respectively. The “Intersect” column shows how many frames 

contain both visual and audio content for each semantic concept 

(intersection of visual-driven and audio-driven ground truth). The 

“%Visual” and “%Audio” columns show the percentage of frames 

in visual-driven ground truth and audio-driven ground truth that 

actually contain both visual and audio contents for the semantic 

concept respectively. For example, for the concept “kids”, 91% of 

the frames labeled with “kids” in the audio-driven ground truth are 

associated with visual labels, while only 43% of frames labeled as 

“kids” in the visual-driven ground truth are related to “kids” 

acoustically. This indicates that there are many videos with kids 

appearing in the images but without kids’ voice; however if the 

videos do contain the kids’ voice they most likely contain kids’ 

images at the same time. From the statistics we may infer that the 

audio evidences for a concept are more likely associated with 

visual evidences.  

Table 3. Comparison of original visual-driven ground truth and 

new audio-driven ground truth  

Concept Visual Audio Intersect %Visual %Audio 

kids 1525771 726902 662745 43% 91% 

party 780240 972960 731453 94% 75% 

car 1157352 1151423 533031 46% 46% 

fb-game 1604012 1117904 1114555 69% 99% 

beach 664793 359424 289476 44% 81% 

dog 520744 123694 121888 23% 99% 

We train and test our audio system based on the new audio-

driven ground truth as well. We only focus on the 6 acoustically 

more salient concepts. For all experiments and analysis in the 

following sections, we only use the BoW Audio baseline system. 

Table 4 compares the performance of the original BoW baseline 

system, the BoW baseline system scored against the new audio-

driven ground truth, and the re-trained BoW system based on the 

new audio-driven ground truth plus tested on the new ground truth. 
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The results show that re-scoring the original BoW baseline system 

on the new audio-driven ground truth gets better performance for 

two of the concepts (“kids”, “party”). This agrees with our 

intuition because “kids” and “party” are more acoustically 

consistent even when the ground truth is generated visually. 

However the audio content for other concepts within the visual-

driven ground truth is very much inconsistent. Re-train the system 

with the new audio-driven ground truth further improves the 

performance by increasing the mean AP from 35.3% to 43.1%. 

Table 4. Evaluating audio BoW baseline system on the newly 

constructed audio-driven ground truth 

Concept Original 

Baseline 

Baseline  

Re-scored 

Re-trained +  

Re-scored 

kids 41.7% 44.8% 52.8% 

party 25.2% 34.1% 35.0% 

car 25.9% 24.8% 43.6% 

fb-game 71.5% 62.9% 75.2% 

beach 12.2% 9.9% 12.5% 

dog 46.0% 35.1% 43.6% 

Average 37.8% 35.3% 43.1% 

 

5.2. Pure Music Videos 

We also notice that quite some videos in the test set are edited with 

pure music (such as a car video with pure pop music), which isn’t 

really acoustically related to the visual semantic concept; but our 

audio system may classify them as the candidate concepts, which 

will increase errors. If we filter out such pure music videos from 

the test set, we can get relative improvement of 11.6% (increasing 

average mean AP from 43.1% to 49.7%). Therefore in the future, 

we will consider building a music classifier to detect incoming 

pure music videos automatically. 
 

5.3. Fusion of Audio and Visual Systems 

As shown in previous baseline results, combining the visual 

annotation system with audio annotation system achieves nice 

improvement over all the 10 classes. To further investigate the 

complementary information between the audio content and the 

visual content, we conduct more fusion experiments of these two 

systems. In the following experiments, we want to evaluate the 

fusion performance on the contents that are both visually and 

acoustically identifiable, we therefore use the intersection of audio-

driven and visual-driven ground truth (as shown in Table 3) as 

scoring reference. Table 5 shows the audio system and visual 

system performance scored against the intersection ground truth. 

“Audio 1” refers to the BoW audio baseline system trained using 

the visual-driven ground truth. “Audio 2” refers to the BoW audio 

system trained using the audio-driven ground truth. “Visual 1” 

refers to the baseline visual system trained using the visual-driven 

ground truth. We also train a new visual and a new audio system 

using the intersection ground truth. “Visual 2” and “Audio 3” refer 

to these two new systems respectively. “Visual 1” and “Audio 2” 

are the best performing visual and audio systems respectively, 

which infers that it is best to train visual and audio systems using 

ground truth from their own perspective. We refer to these systems 

using abbreviations A1, A2, A3, V1, and V2 to save space.    

We conduct four fusion experiments: fusion of “A1” and “V1” 

(named Fusion I), “A2” and “V1” (named Fusion II), “A2” and 

“V2” (named Fusion III), and “A3” and “V2” (named Fusion IV). 

Detailed fusion results are shown in Table 6. All fusions improve 

the corresponding single visual-only or audio-only system, which 

again proves that audio and visual streams contain complementary 

information for interpreting a semantic concept. A higher relative 

improvement of 20.2% from Fusion I (compared to 13.6% from 

baseline fusion in Table 2) indicates that for both visually and 

acoustically relevant content, fusion brings more gain. Fusion II 

achieves better improvement than Fusion I, which indicates that it 

is better to train audio semantic concept using audio-driven ground 

truth. Fusion III & IV cannot out-perform Fusion II shows that 

training visual semantic concept is better to use visual-driven 

ground truth. Fusion II achieves the best relative improvement of 

33.5%, in which visual and audio systems are trained based on 

visual-driven and audio-driven ground truth independently.  

Table 5. Performance scored against intersection ground truth 

Concept Audio 1 Audio 2 Audio 3 Visual 1  Visual 2  

kids 47.4% 54.1% 51.5% 26.5% 23.8% 

party 34.5% 35.7% 34.2% 80.8% 80.2% 

car 17.6% 20.6% 19.4% 37.4% 39.5% 

fb-game 77.4% 80.2% 80.4% 94.5% 94.5% 

beach 11.4% 13.0% 12.5% 44.7% 42.0% 

dog 40.9% 49.9% 50.4% 13.3% 12.8% 

Average 38.2% 42.2% 41.4% 49.5% 48.8% 

Table 6. Fusion of Audio and Visual concept annotation systems 

Concept 
Fusion I 

(A1+V1) 

Fusion II 

(A2+V1) 

Fusion III 

(A2+V2) 

Fusion IV 

(A3+V2) 

kids 47.9% 61.1% 59.6% 57.5% 

party 82.9% 83.4% 82.9% 82.4% 

car 38.3% 45.9% 46.6% 45.8% 

fb-game 95.7% 97.0% 96.4% 96.3% 

beach 50.9% 55.9% 52.1% 51.7% 

dog 42.7% 55.3% 51.6% 51.8% 

Average 59.7% 66.4% 64.9% 64.3% 

 

6. CONCLUSIONS  

This paper presents our semantic concept annotation system using 

audio only. The system uses three different audio feature 

representations and negative bootstrap SVM concept classifier. 

The experimental results on the HUAWEI grand challenge UGC 

video data show that our audio-only concept annotation system can 

detect semantic concepts significantly better than random guess. 

When combining with visual-only concept annotation system, it 

brings improvement in general over all concepts and more 

significantly on certain concepts. Further detailed analysis shows 

that it is better to interpret a concept both visually and acoustically 

via training visual system and audio system using visual-driven 

and audio-driven labels separately. A relative improvement of 33.5% 

is achieved when fusing the audio and visual systems according to 

such criteria. In the future work, we will explore automatic 

approaches for detecting music edited videos and investigate the 

potential of utilizing the concept co-occurrence property.  
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