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ABSTRACT

This paper presents a novel interactive method for recognizing
handwritten words, using the inertial sensor data available on smart
watches. The goal is to allow the user to write with a finger, and
use the smart watch sensor signals to infer what the user has written.
Past work has exploited the similarity of handwriting recognition
to speech recognition in order to deploy HMM based methods. In
contrast to speech recognition, however, in our scenario, the user can
see the individual letters that are recognized on a sequential basis,
and provide feedback or corrections after each letter. In this paper,
we exploit this key difference to improve the input mechanism over
a classical source-channel model. For a small increase in the amount
of time required to input a word, we improve recognition accuracy
from 59.6% to 91.4% with an implicit feedback mechanism, and to
100% with an explicit feedback mechanism.

Index Terms— Handwriting recognition; inertial sensor; wear-
able device; user feedback; neural network; language model.

1. INTRODUCTION

Smart watches are emerging as an important new form of consumer
technology. While they can provide a new level of convenience, they
also pose challenges, as the data entry methods developed for de-
vices with larger screens are no longer applicable. In particular, the
commonly used touch based text entry and image based handwriting
recognition [1–5] are difficult as the watch screens are much smaller
than phones and tablets. Speech recognition is an alternative way
to do text entry, but it is not applicable when there is high ambient
acoustic noise or when people don’t want to speak in public.

In this paper, we study handwriting based text entry methods that
allow a user to write with their finger while wearing a smart watch.
The data we use comes from inertial sensors, namely an accelerom-
eter and a gyroscope, which can be found in most recent mobile de-
vices. There are several challenges with using inertial sensor data for
handwriting recognition. Firstly, the hand trajectory is not available
or difficult to recover reliably. Secondly, stroke information is not
available - unlike touch screens where finger up and finger down are
very important indicators for strokes, inertial sensors cannot discrim-
inate actual writing sequence from other hand movements. Thirdly,
people write letters and words very differently.

Fortunately, in the context of finger-writing while wearing a
smart-watch, we have a key advantage - the user can see and react
to the intermediate results. This allows us to exploit schemes where,
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based on what the system recognizes, the user can either implicitly
or explicitly make corrections as recognition proceeds. This is not
the case in the related problem of speech recognition, where a person
cannot adapt their speech mid-word as the recognizer operates.

Our baseline recognition system consists of two main compo-
nents: a letter-recognition module, which recognizes isolated letters,
and a word recognition module that infers the likeliest word given
the errorful letter sequence. Our baseline for the word recognition
module is a standard source-channel model, described in Section 4.1.
This architecture is illustrated in Figure 1.

We enhance this basic system by leveraging the fact that we can
easily display the last letter that was recognized to the user. This
enables powerful feedback mechanisms. In the first, which we term
implicit feedback, the user simply repeats the letter if it was incor-
rectly recognized. The system, however, does not know if this new
input is because the last letter was incorrect, or if the user is simply
providing the next letter. It must be inferred. In the second type of
feedback, the user first taps, and then repeats the letter. Since we can
reliably recognize sharp taps, the system knows the last letter was in-
correct, and we call this explicit feedback. The feedback architecture
is illustrated in Figure 2.

We implement the handwriting recognition framework on a
smart watch device, and conduct experiments on real users. Both
methods produce dramatic accuracy improvements over a classical
source-channel decoder.

2. RELATED WORK

The letter classification part of our work is related to other inertial
sensor based gesture recognition work done in the past. There are
three major approaches. The first approach uses time sequence mod-
eling such as HMMs or RNNs [6–9]. The second approach uses tem-
plate matching [10–12]. The third approach is to treat the problem
as a classification problem [13–18]. Some more related work on this
can be found in survey papers like [19, 20].

Relatively fewer people have explored the task of recognizing
gesture sequences. The work most related to ours is the ‘Air Writ-
ing’ system by Amma et.al. [21,22]. In this system, the authors used
HMM based systems to directly recognize words and use a language
model to correct errors in sentences. Our work differs from theirs in
the following aspects. Firstly, we treat handwriting as an interactive
process with the device, and propose to use feedback from user to
improve recognition. With feedback, we are able to significantly re-
duce word recognition error and improve writing speed, which they
did not discuss. To our best knowledge, our work is the first to study
using user feedback in the writing process. Secondly, we use letters
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Fig. 1. Baseline System Architecture.
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Fig. 2. Feedback Architecture. The dotted line indicates information
that is used to adjust the letter priors.

as the basic recognition unit and use letter (not word) level language
models when recognizing words, and therefore our system is not re-
stricted to any particular dictionary.

3. LETTER RECOGNITION

The input to the letter recognition module comes from the ac-
celerometer and gyroscope sensors mounted on a smart watch.
These sensors are now standard on most mainstream wearable de-
vices. The sensor signals are sampled at 500Hz, and each sensor
sample is a 3D vector, so each frame of data is a 6 dimensional
vector. The accelerometer provides Cartesian acceleration measure-
ments, while the gyroscope provides angular velocity.

The user is asked to wear a smart watch on their writing hand,
and write capital letters using their index finger on a desk surface.
After each letter, the user is required to hold the hand still for a short
period of time, which is used to segment writing sequences from
non-writing sequences. We set a threshold on the moving variance
of the signal in a window of 100 frames (0.2s) to discriminate writing
sequence against non-writing sequence.

Our letter recognizer takes as input a writing sequence segment
and predicts one of the 26 letter classes. As different people write
letters at different speed, we first normalize all the writing sequences
to a fixed length of 200 frames using linear interpolation. Then the
mean of each dimension is subtracted and we integrate the signals
over time once with initial velocity/angle set to 0. The 200×6 trans-
formed sequence is concatenated into a 1200 dimensional feature
vector, which is then normalized across all training sequences to
have zero mean and standard deviation 1. The feature vector is fed
into a deep neural network for classification.

We collected capital letter writing data from 10 users. Each user
was asked to write each letter at least 20 times. For each letter and
each user, part of the samples are used as validation and test sets, and
the rest are used for training.

On this dataset, our DNN classifier achieves a test accuracy of
80.4%. As a comparison, a carefully tuned SVM with RBF kernel

achieves a test accuracy of 77.1%. We also tried time sequence mod-
els like RNNs and LSTMs [23], which take a window of 50 frames
of the transformed signals as input at each time step, and output a
letter class label for each time. Test performance on this dataset for
RNN and LSTM are 77.3% and 79.8% respectively. We therefore
use the best DNN model for letter classification.

4. WORD RECOGNITION

Once the user stops writing, the word recognition module is used to
determine which word has been written. As letter prediction errors
are unavoidable, we study how to resolve the errors at word level.
In this section, we first present a standard noisy-channel model, and
then describe our methods for integrating user feedback.

4.1. Noisy-Channel Baseline

Consider an input sequence of x = {x1, ..., xT }, where each xt
corresponds to the writing data of one letter, and is associated with
one output yt which is one of the 26 letters. Our task is to find the
correct y = {y1, ..., yT } sequence that corresponds to the word the
user intended to write.

The noisy-channel model [24–26] is widely used in speech
recognition, which finds the optimal y∗ that maximizes the poste-
rior. In our case, letters are clearly segmented, and the only type of
errors that need to be considered are substitutions. The probability
of a particular letter sequence y is given by:

p(y|x) ∝ p(x|y)p(y) = p(y)

T∏
t=1

p(xt|yt)

∝ p(y)

T∏
t=1

p(yt|xt)/p(yt) (1)

where p(yt|xt) is given by the DNN, p(yt) is estimated using letter
frequency, and p(y) can be computed using a letter level language
model or a dictionary with word frequency. As the state space for
y is on the order of KT where K = 26, exhaustive search is pro-
hibitive for even a small T , we use beam search to do decoding.

4.2. Interactive Word Recognition with User Feedback

As our DNN letter classifier can make predictions in real time, it is
possible to show the letter predictions that have been made so far
to the user during writing. The user can then use this information
to correct errors, which can improve the recognition performance or
reduce writing time. We study two types of feedback in this paper:

• Explicit feedback, where whenever the user sees an incorrect
letter prediction, the user does an extra ‘tap’ action to remove
the incorrect prediction from prediction history, and writes
the letter again.

• Implicit feedback, where the user keeps writing the same
letter until the letter predictor gets it right.

The explicit feedback requires the recognition of the extra ‘tap’ ac-
tions (which is chosen to be easily detectable), and the extra time for
the ‘tap’s during writing. The implicit feedback does not require the
‘tap’s, but the error signal is more indirect, as the user never tells the
system which letter is correct, and which is not. An example of an
interaction sequence with implicit feedback is shown in Table 1.
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Intended a a a i m m
Recognized & Displayed d d a i n m

Table 1. An input interaction with implicit feedback, where the user
inputs the word “aim”. The top line indicates what the user intended
after seeing the last recognized letter. The bottom line shows what
the system recognized and displayed.

4.2.1. Improving Letter Recognition using Word Level Information

As the letter-input process proceeds, it is possible to infer which let-
ters are most likely to be input next, and this can be used to dynami-
cally improve the performance of the letter recognition module. For
example, when using explicit feedback, we know the correct letter
prefix, and can use a language model to bias towards likely exten-
sions. To combine the information from the DNN letter recognizer
with the information from a language model, we propose a log-linear
model for predicting true label zt for the tth letter given xt and the
prediction history y1:t−1 = {y1, ..., yt−1}

p(zt|xt, y1:t−1) ∝ exp (log pNN(zt|xt) + λ log q(zt|y1:t−1))
(2)

Here, pNN is the DNN prediction distribution, q is a prior for zt
based on history up to the t − 1’th letter, and λ trades off the two.
We emphasize the distinction between zt and yt where yt is the pre-
diction and zt is the intended letter which is not visible to the system.

There are many possible choices for q. For explicit feedback, we
consider two alternatives: a letter unigram and a letter level language
model. As recognition errors are explicitly removed from prediction
history, y1:t−1 should always be the correct context for a language
model. The errors are also not predicted in the next time, which we
found to be a very useful rule.

For implicit feedback, as y1:t−1 may contain errors, a straight
application of language model can be problematic. However, be-
cause of the restrictions in the writing process, the true context must
be a substring of y1:t−1. Ideally, we should have a distribution over
all possible contexts and aggregate the language model prediction
distribution over all of them. We observe that each correct context
has a one-to-one mapping to a binary sequence m1:t−1, and mi = 1
corresponds to yi being correct and mi = 0 otherwise. We can
therefore formulate q as

q(zt|y1:t−1) =
∑

m1:t−1

p(zt|m1:t−1, y1:t−1)p(m1:t−1|y1:t−1) (3)

where p(zt|m1:t−1, y1:t−1) can be computed using language model,
as m1:t−1 and y1:t−1 jointly determines the correct context, the sec-
ond term p(m1:t−1|y1:t−1) assigns a weight to every m1:t−1. The
distribution p(m1:t−1|y1:t−1) can be updated recursively over time,

p(m1:t−1|y1:t−1) ∝ p(m1:t−1, yt−1|y1:t−2)

= p(mt−1, yt−1|m1:t−2, y1:t−2)p(m1:t−2|y1:t−2) (4)

For the first term p(mt−1, yt−1|m1:t−2, y1:t−2), we introduce the
intended letter zt−1 and have

p(mt−1, yt−1|m1:t−2, y1:t−2) (5)

=
∑
zt−1

p(mt−1, yt−1, zt−1|m1:t−2, y1:t−2)

=
∑
zt−1

p(mt−1|yt−1, zt−1)p(yt−1|zt−1)p(zt−1|m1:t−2, y1:t−2)

where p(mt−1 = 1|yt−1, zt−1) = 1 when yt−1 = zt−1 and 0
otherwise, p(zt−1|m1:t−2, y1:t−2) is given by the language model.
We estimate p(yt−1|zt−1) as 1 − ε when yt−1 = zt−1 and ε

K−1

when yt−1 6= zt−1, where ε is the class-independent error rate.
The proposed model will be referred as AggregatedLM in the

experiments. In practice, we keep at most top N different m1:t−1

candidates at each t ordered by the probability p(m1:t−1|y1:t−1) and
then renormalize the distribution. We useN = 64 throughout all the
experiments.

The AggregatedLM model can be made even better based on a
simple observation. As the user is assumed to keep writing the same
letter when a letter is predicted incorrectly, the model should avoid
predicting the incorrect predictions made so far. We can use this ob-
servation when computing p(zt|m1:t−1, y1:t−1). More specifically,
when mt−s:t−1 are all 0 for some s, yt−s:t−1 are then all incorrect.
We therefore set the probability of zt taking any of these predictions
to be 0 and renormalize the distribution. This improved method will
be referred as AggregatedLM+.

4.2.2. Post-Writing Error Correction for Implicit Feedback

For implicit feedback, after the user finishes writing a word, we still
need to decode the correct word from the sequence y1:T as it may
contain errors.

One baseline method is to use a word dictionary and find the
closest word to y1:T in dictionary, in terms of edit distance. Note
that there are special constraints on the writing process, which re-
stricts the only error to be insertion error and yT should always be
correct as the user will stop after writing the last letter in a word.
Ties are handled by choosing the word with the highest frequency in
the corpus used to build the dictionary.

We further improve the baseline method using probabilistic
models. Using w for the correct word, we find the optimal w∗ that
maximizes

p(w|y1:T ) ∝ p(y1:T |w)p(w) (6)

where we model p(y1:T |w) as
(

ε
K−1

)T−|w|
(1 − ε)|w|. The prior

p(w) can be modeled either using word frequency and a dictionary
or using a letter level language model.

When using a letter language model, we only need to search
through a space of 2T−1 candidates as w must be a substring of y1:T
and yT is always correct. This is a much more manageable space
than KT as for the noisy-channel model proposed in Section 4.1.

5. EXPERIMENTS

In this section we present experiments to study the effect of the dif-
ferent feedback types: no feedback (noisy-channel model), implicit
feedback and explicit feedback. For the two feedback methods, we
further study the proposed letter prediction improvements. For im-
plicit feedback, we also study the proposed post-writing error cor-
rection methods, evaluating word prediction accuracy.

We used a 6-gram letter level backoff language model trained
on the Gutenberg corpus1. The word dictionary and letter frequency
used in the experiments are also computed using this corpus. The
‘tap’ recognition model is trained on a small set of ‘tap’ data from
3 users, which new users can easily adapt and learn to use during
writing.

1Available at http://www.nltk.org/nltk_data/
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Letter Predictor Acc.
NFB NN 58.7

IFB

+Unigram 59.0
+LM 62.9

+AggregatedLM 70.2
+AggregatedLM+ 71.1

EFB
NN 63.6

+Unigram 68.5
+LM 80.6

Table 2. Letter prediction results. ‘NFB’ for no feedback, ‘IFB’ for
implicit feedback, ‘EFB’ for explicit feedback, and ‘Acc.’ for per
letter accuracy (in %).

Method Unary EditDist ProbEditDist LM
Acc. (%) 78.6 88.0 88.0 91.4

Table 3. Comparison of error correction methods.

5.1. Analysis of Language Model Effectiveness

In this section, we perform an initial set of experiments to compare
the performance of the different language modeling methods pro-
posed in Section 4.2.1.

To achieve a fast turnaround, these experiments are done with
a user simulator. The simulator is based on letters collected from 8
previously unseen users. The simulator interacts with the recogni-
tion algorithm and provides a random occurrence of the segmented
letters whenever a new input is required. While this misses the nu-
ances of live interactions, it allows for rapidly testing many feedback
mechanisms, and we present the results of end-to-end human inter-
actions in the next sections. Table 2 shows the results of the different
methods.

5.2. Post-writing Error Correction Effectiveness

In this experiment we compare the different post-writing error cor-
rection methods presented in Section 4.2.2 for implicit feedback.
Users were asked to write words while interacting with the sys-
tem. The user simulator was not employed. For the error correc-
tion methods, we have as input the y1:T sequence obtained using
IFB+AggregatedLM+, which may contain errors, and output the es-
timated correct word w.

We compare the model that does not use any error correction
(‘Unary’), the deterministic minimum edit distance method (‘Edit-
Dist’), the probabilistic model that uses a word dictionary+frequency
for p(w) (‘ProbEditDist’) and the probabilistic model that uses a let-
ter language model for p(w) (‘LM’).

Experiment results are reported in Table 3. On this task, we
noticed that both EditDist and ProbEditDist perform equally well.
They all improve word accuracy significantly from the baseline.
Using a letter language model further improves word accuracy to
91.4%.

5.3. Full User Study Results

In this section, we summarize the results of both implicit and explicit
feedback methods. In addition to the data we had in the previous

NFB+NN IFB+AggregatedLM+ EFB+LM

Acc. 59.6
78.6

100.0
91.4 (with correction)

Time/letter 2.39 2.80 2.76

Table 4. Comparison for the three feedback types on word recogni-
tion accuracy (in %) and average writing time per each correct letter
(in seconds; pause, tap and error time included).

section, we have data2 from the same 8 users writing the same list of
words twice. Once with the baseline noisy-channel model without
using feedback (NFB+NN) and once with explicit feedback together
with language model for letter recognition (EFB+LM).

Table 4 shows the experiment results. The standard noisy-
channel model achieved a word prediction accuracy of 59.6% on
this task. The implicit feedback approach boosts the accuracy up
to 78.6%. The post-writing error correction further improved the
recognition rate to 91.4% (see Section 5.2). For explicit feedback, as
all letter errors are explicitly corrected by the user, a 100% accuracy
is guaranteed. We also note that both implicit and explicit feedback
methods achieved very significant accuracy boost without increasing
the writing time too much.

While in these experiments the explicit feedback method outper-
formed the implicit method, our test subjects were careful in tapping,
so we had no tap recognition errors. On larger populations, this may
not be the case, and implicit feedback may be preferable.

6. CONCLUSIONS

In this paper, we studied handwriting recognition using the inertial
sensor data from a smart watch. We presented a recognition frame-
work composed of DNN based letter classifier and interactive word
recognition using user feedback. Experiments on real users show
that our novel feedback-based word recognition methods can achieve
significantly better accuracy than a baseline that does not use feed-
back, with small increase in writing time. A prototype system is built
that can handle end-to-end processing in real time.
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