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ABSTRACT 

 
Human tracking across multiple cameras is highly demanded 
for large scale video surveillance. To successfully track 
human across multiple uncalibrated cameras that have no 
overlapping field of views, a system to train more reliable 
camera link models is proposed in this paper. We employ a 
novel approach of combining multiple camera links and 
building bidirectional transition time distribution in the 
process of estimation. Through the unsupervised scheme, the 
system builds several camera link models simultaneously for 
the camera network that has multi-path in presence of the 
outliers. Our proposed method decreases incorrect 
correspondences and results in more accurate camera link 
model for higher tracking accuracy. The proposed algorithm 
shows the effectiveness by evaluating in the real-world 
camera network scenarios. 
 

Index Terms— human tracking, unsupervised learning, 
disjoint camera view, multiple cameras, camera link model 
 

1. INTRODUCTION 
 
Recently, video surveillance systems are getting deployed 
both in private and public areas for monitoring and security 
purposes. Due to the limited field of view (FOV) of a single 
camera, human tracking across multiple cameras is critically 
needed. In spite of plenty of research efforts being made on 
tracking multiple people across the uncalibrated cameras 
with disjoint views, this topic has remained quite an open 
and challenging issue, due to the potential changes of   
cameras’ illumination, and variations of tracked person’s 
perceived appearance between cameras from different 
perspective, lighting condition and viewpoint. To overcome 
these challenges, many researchers resort to solving object 
tracking across camera view problem based on the 
correspondences of tracks among multiple sets of candidates 
[1][2][3][4][5]. More specifically, in [3], they exploit an 
incremental scheme to model both the color variations and 
posterior probability distributions of spatio-temporal links 
between cameras for the tracking. This technique is 
completely unsupervised, however, they require a large 
amount of training data required in the incremental learning 
procedure. An adaptive method for learning spatio-temporal 
relationships is proposed in [4], which needs much less 
training data than that in [3]. However, the features for 
matching the correspondences are integrated either with 
uniform weights or empirically determined weights, 

resulting in worse performance. In [5], the camera link 
models are learned based on a fully unsupervised scheme in 
the presence of outliers. The weights for integrating multiple 
features are systematically determined during the training 
stage. All the above works individually estimate only one 
camera link model for a pair of two directly-connected 
cameras and apply it for both directions during the tracking. 
However, all the features used in the matching are not fully 
symmetrical, especially, transition time distribution from one 
camera to the other is usually not the same in the opposite   
direction. 

In this paper, we present a novel estimation scheme to 
acquire more precise camera link models and show the 
efficiency of proposed algorithm. More specifically, we 
combine several cameras which are directly connected to 
jointly train the associated camera link models. It enables to 
decrease the ratio of outliers and wrong correspondences in 
the training stage. Further, we employ an asymmetric 
bidirectional transition time distribution, which is essential 
in improving the tracking performance of the camera 
networks. 

The rest of this paper is organized as follows. In Section 
2, we give an overview the overall tracking system. We 
provide the algorithmic details of the proposed scheme in 
Section 3. The experimental results are reported in Section 4, 
followed by the conclusion in Section 5. 
 

2. SYSTEM OVERVIEW 
 

The original unsupervised multi-camera tracking system 
proposed in [5] consists of two major stages, i.e., training 
and testing, as follows (see Fig. 1):  

2.1. Training Stage 
First, persons who leave or enter the FOV of each pair of   

 
Figure 1. A multiple camera tracking system [5]. 
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exit/entry zones in two directly-connected cameras are 
collected. The deterministic annealing and the barrier 
methods are applied to estimate the “symmetrical” camera 
link model between two directly-connected zones [5]. The 
camera link model contains several features: transition time 
distribution, holistic and regional brightness transfer 
functions (BTFs) [7], region mapping matrix, region 
matching weights and feature fusion weights [5]. These 
results are used on the following testing stage, assuming the 
same camera link model can be applied to either direction of 
human movement and re-identify the human who cross the 
cameras. 

2.2. Testing Stage 
All the multiple cameras perform the single camera human 
tracking by adaptive Kalman filtering and multiple kernels 
tracking with projected gradients [6]. Each camera Ci 
maintains an exit list Li,k for each exit/entry zone k, which  
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contains all the observations {Oi,k} of the persons who have 
left the FOV from zone k within training time Tmax seconds 
from now, and Ni,k denotes the number of observations on 
exit/entry zone k of camera i. When a person enters the FOV 
of the other connected camera, tracking algorithm finds the 
best correspondence among the exit lists by computing the 
matching scores. The matching distance between two 
observations, O1, O2, can be computed as the weighted sum 
of distances according to Eq. (2), 
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where αj is the weight derived from the training stage. When 
the lowest score on possible pairs is lower than a predefined 
threshold, we conclude that the pair is the same person. 
Otherwise, we will regard it as a new person. The re-
identification results with higher confidence can also be 
further used to update the camera link models. 

 
3. PROPOSED ALGORITHMS 

 
We propose a new estimation method to produce more 
reliable camera link models for camera networks. Through 
combining several links in the training stage, each link can 
produce better camera link model between each directly 
connected camera pair. In this paper, we jointly train the 
pairwise camera link models based on a group of three zones, 
each of which has two different connected links for our 
proposed algorithms. The deterministic annealing is again 
employed [9][10] to build the optimum binary permutation 
matrix P and the corresponding camera link model between 
each pair of connected cameras.  

3.1. Camera Link Model Estimation 
In the training stage, we estimate the camera link model 
based on sets of observations acquired from directly-
connected cameras. For example, camera C1 is directly 
connected to camera C2 in Fig. 2. An exit set X and an entry 
set Y are collected from C1 and C2, within training time Tmax, 
respectively.  

              
1 21 2 1 2, ,..., , , ,..., ,N Nx x x y y y   = =   X Y             (3) 

 
where xi and yj are exit and entry observations, and N1 and 
N2 are the number of the observations. Each element of X 
and Y maintains the exit or entry time stamp, holistic color, 
region color and texture features. We exploit these 
information to match the correspondences automatically 
between the exit/entry observation sets. Our goal is to 
determine the (N1+1) × (N2+1) permutation matrix P, whose 
element Pij is set to 1 if xi corresponds to yj. Otherwise, it is 
set to 0. The extra column and row represent the outlier 
entries. Finally the camera link model can be derived from 
the estimated correspondence matrix P. The problem can be 
written as a constrained minimization integer programming 
problem: 
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where J is the objective function to be minimized and 
comprises several cost terms, {costfeature}, each of which  
stands for the distance of the associated feature between exit 
and entry observations [5]. The objective function J is 
iteratively minimized with P approaching to binary matrix. 
The converged matrix P is then used to derive the 
corresponding camera link model. The region color and 
region texture features are necessarily incorporated to 
overcome the issues introduced by the different viewing 
perspectives. As shown in Fig. 3(a), a target is divided into 6 
regions based on the shown height ratios. Note that the exit 
observation in C3 as shown in Fig. 3(c) can be re-identified 
to be the entry observation in C2 as shown in Fig. 3(b), via 
the (holistic) color appearance of the whole body, as well the 
region color and texture appearance through appropriate 
region mapping and weightings.  

3.2. Combined Camera Links Training 
Nowadays more and more surveillance cameras are getting 
deployed on the streets, resulting in a spider web like   
connected camera links, i.e., one camera is directly 
connected with multiple other cameras. Most methods that 
use appearance transfer functions [4][5][7][10] build link 

 
Figure 2. Camera deployment. Red ellipses are exit/entry zones for 
four links and the number in blue rectangle denotes the camera 
number. 
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model by using 1-to-1 pair of connected cameras to 
represent the space-time relationship and color/texture 
transfer models. However, if there are several forked roads, 
many persons who leave one exit will not necessarily show 
up in one specific entry and they are going to be regarded as 
outliers in matrix P. The error increases as the number of 
outliers increases [8]. In other words, the estimation of P 
may make more incorrect correspondences, resulting in less 
accurate camera link models. Thus, we are motivated to 
combine several pairs of connected cameras during the 
estimation of the P’s to jointly create more reliable camera 
link models. Fig. 2 shows an actually deployed 4-camera 
network {C1, C2, C3, C4} surrounding the Electrical 
Engineering building of the University of Washington, there 
are in total four camera links as denoted by blue dash lines. 
So the person who exits from C1 can enter C2 or C3 by 
crossing the link1 or link2, vice versa for C2 and C3. The 
previous method in [5] treats a person who enters C3 as an 
outlier during building camera link model for link1. On the 
other hand, this person becomes an inlier by combining 
link1 and link2 together. 

Suppose we have an additional set, Z, from entry, C3.  
  

31 2, ,..., ,Nz z z =  Z                          (8) 
 
where zk is an entry observation and N3 are the total number 
of observations within the training time Tmax. By considering   
Z in the previous Plink1 that denotes the correspondence 
matrix of link1, i.e., the correspondence is now extended 
from every exit observation of C1 to every entry observation 
of both C2 and C3. The permutation optimization problem can 
now be rewritten as follows: 
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where Pr is a  concatenated matrix of Plink1 and Plink2, except 
the outlier row is merged to one row. The wrong matches 
occur when the solver is trapped in the local minimum   
during solving the minimization problem with deterministic 
annealing [9]. However, Z contains several inliers from exit 
zone of C1, so incorporating elements of Z is equivalent to 
enhancing the magnitude of the global minimum in the 
optimization. Thus, incorrect exit/entry correspondences 
decrease as the percentage of the outliers in the training data 
is reduced. As a result, the resulting camera link models are 
more accurate due to more true positive pairs and less false 
positive pairs being utilized in the training. 

3.3. Bidirectional Link Model 
In [5], the camera link model is constructed based only on   
one exit/entry direction (e.g., exit from C1 and entry on C2) 
and that is applied to both directions of link1 (i.e., exit from 
C1 and entry on C2 as well as exit from C2 and entry on C1) 
to find correspondences during the testing. Here camera link 
model includes transition time distribution, brightness 
transfer function, region mapping matrix, region matching 
weights, and feature fusion weights. All of these components 
can be reversed except the transition time distribution, which 

is represented as a probability density function. So when we 
exploit one camera link model for tracking of both directions 
of the same link, it inevitably degrades the tracking accuracy. 
Transition time distribution can be similar only when the 
road’s conditions, i.e., width, slope, surface, are similar on 
both directions, this is not the case most of time. Thus, 
bidirectional link models, i.e., asymmetric link models, have 
to be estimated in the training stage and employed in the 
testing stage.  
 

4. EXPERIMENTAL RESULTS 
 
We have experimented with several videos recorded on four 
cameras shown in Fig. 2. The FOVs of the cameras are 
disjointed and the cameras are not calibrated. We assume 
that we know the camera topology and the exit/entry regions 
in the FOVs of the cameras.  

4.1. Camera Link Model Estimation 

The deployed camera network has four links between five 
exit/entry zones as shown in Fig. 2. To build camera link 
models, we collect videos with persons’ passing by any 
exit/entry zone for 15 minutes in the training stage. They 
have 245 distinct persons and 148 outliers. We compare the 
results of 1-to-1 pair-wise link modeling method with the 
result of 1-to-N combined link modeling method by using 
these datasets. In the 1-to-1 method, which is based on the 
pair of one exit corresponding to one entry zone, data from 
two directly connected cameras are utilized for training. On 
the other hand, 1-to-N method, which has one exit 
corresponding to several entry zones, utilizes data from 
combined links for training. Table I shows the number of 
outliers in each link and the comparison results in the 
training stage where OL denotes outlier and Ci –Cj denotes a 
link from exit Ci to entry Cj. By combining two links, 
outliers decrease in all the links, i.e., in C3–C2, outliers 
decrease as much as 45% (1-to-1 method has 67 outliers and 
1-to-N method has just 37 outliers) . We evaluate the results 
by using the following three metrics: precision, recall and F1 
score as defined in Eq. (12). It can be seen in Table I that in 

1
2, ,  .TP TP precision recallprecision recall F

TP FP TP FN precision recall
× ×

= = =
+ + +

 (12) 

almost all links, 1-to-N method obtains equal or more true 
positive (TP) and less false negative/positive (FN/FP) values 
than those of 1-to-1 method. In C2–C3, 1-to-1 method 
achieves more TP, however, also has more FP. In case of 1-
to-1 method, the average of precision is 0.53, recall is 0.83 
and F1 score is 0.61. On the other hand, 1-to-N method 
achieves 0.98 in precision, 0.89 in recall and 0.93 in F1 
score. Thus, the proposed 1-to-N algorithm significantly 
outperforms 1-to-1 in every evaluation measure. In Fig. 4, 
we compare some of estimated camera link models, in terms 
of BTF and region mapping weights, by applying to Fig. 
3(b) and 3(c). Euclidean distance of BTF transferred 
histograms is 0.0954 between blue and green, 0.0706 
between blue and black, and 0.0659 between blue and red. 
Thus, the resulting camera link models estimated from 1-to- 
N method are more accurate. Fig. 5 shows the asymmetric 
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Table I. Experimental results in the training stage 

Link Method OL TP FN FP precision recall F1 

C1–C2 
1-to-1 41 18 6 11 0.62 0.75 0.68 
1-to-N 35 20 4 0 1 0.83 0.91 

C1–C3 
1-to-1 45 3 3 10 0.23 0.5 0.32 
1-to-N 21 4 2 0 1 0.67 0.80 

C2–C1 
1-to-1 19 6 1 5 0.55 0.86 0.67 
1-to-N 7 7 0 0 1 1 1 

C2–C3 
1-to-1 14 12 0 3 0.8 1 0.89 
1-to-N 7 10 2 1 0.91 0.83 0.87 

C3–C1 
1-to-1 49 2 0 13 0.13 1 0.23 
1-to-N 47 2 0 0 1 1 1 

C3–C2 
1-to-1 67 27 4 5 0.84 0.87 0.85 
1-to-N 37 31 0 1 0.97 1 0.98 
   

(a) (b) (c) 
Figure 3. (a) A target is divided into 6 regions based on the shown 
height ratios. (b) An exit observation in C3. (c) An entry 
observation of the same person in C2.  

 

 
Figure 4. Histogram comparison. Blue: the histogram from region 
4 in Fig. 3(b). Green: the histogram from region 4 in Fig. 3(c). 
Black: the histogram from Fig. 3(c) after applying BTF and region 
mapping derived from 1-to-1 method. Red: the histogram from Fig. 
3(c) after applying BTF and region mapping derived from 1-to-N 
method. Note only one channel is shown here for demonstration 
purpose. 

 

 
Figure 5. Asymmetric transition time distributions of all 8 links. 

 Table II. Tracking accuracy 

Method Unidirectional 
1-to-1 

Bidirectional 
1-to-1 

Unidirectional 
1-to-N 

Bidirectional 
1-to-N 

Accuracy 72.2% 74.7% 86.1% 87.3% 
 
transition time distributions of eight links. The same color 
lines are used to represent the estimated results of same links 
of opposite directions, i.e., blue solid and dash lines are for 
link1. Even though black and green solid lines are similarly 
distributed to dash lines of the same color, blue and red solid 
lines are quite different from the same color dash lines, 
reflecting the transition time differences between 
bidirectional link1 and link3, i.e., gentle slopes occur in 
these two links. With these more precise transition time 
distributions, we are able to enhance the accuracy of time 
spent on both directions. It is also worthwhile to mention to 
the comparative computational cost involved in these two 
methods. The average total CPU times of the 1-to-1 and 1-
to-N training algorithms are 220.718 sec and 578.897 sec 
over the 15-minute training videos of 4 cameras on Intel 
core i5 3.0 GHz with 6 GB of RAM. The testing time of 
both methods are almost the same. 

4.2. Tracking Accuracy 
To test the tracking accuracy after the training, we further 
use about 15 minutes of 4-camera videos, different from the 
training videos, which include 276 persons, 79 pairs with an 
outlier rate about 50.4%. Table II shows the results of 
tracking accuracy. We compare the performance based on 
four experiments. The unidirectional 1-to-1 method is the 
same as [5] and the bidirectional 1-to-N method is our 
proposed algorithm in this paper. Another two additional 
experiments are also performed to justify the effect of the 
proposed bidirectional scheme. As shown in Table II, the 
proposed method achieves the best accuracy of 87.3%. By 
combining multiple links in the camera link model 
estimation, the accuracy is improved about 13.9% and 
12.6% on unidirectional and bidirectional method, 
respectively. As we expect, camera link models become 
more accurate, so we can correctly re-identify more pairs. 
Taking into account the bidirectional scheme contributes to 
enhance the accuracy about 2.5% and 1.2% in 1-to-1 and 1-
to-N methods separately. The effect is less than the 
combining multiple links in the training, however, it can give 
larger advantages when the load’s conditions are highly 
asymmetric.  
 

5. CONCLUSION 
 
In this paper, we presented a new estimation method to build 
camera link models for tracking human across the forked 
camera networks. Based on the proposed unsupervised 
scheme, we provide a solution that estimates accurate 
camera link models by matching the correct 
correspondences between the observations from one exit and 
several entries in the presence of outliers. To show the 
efficiency of our proposed method, we conducted 
experiments on real scenario videos. We compared our 
method with established models and found that ours 
performed favorably on both camera link model estimation 
and human tracking across the cameras. 
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