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ABSTRACT 
 
In this paper, we propose an innovative human tracking 

algorithm, which efficiently integrates the deformable part 

model (DPM) into the multiple-kernel based tracking using a 

moving camera. By representing each part model of a DPM 

detected human as a kernel, the proposed algorithm 

iteratively mean-shift the kernels (i.e., part models) based on 

color appearance and histogram of gradient (HOG) features. 

More specifically, the color appearance features, in terms of 

kernel histogram, are used for tracking each body part from 

one frame to the next, the deformation cost provided by 

DPM detector is further used to constrain the movement of 

each body kernel based on the HOG features. The proposed 

deformable multiple-kernel (DMK) tracking algorithm takes 

advantage of not only low computation owing to the kernel-

based tracking, but also robustness of the DPM detector. 

Experimental results have shown the favorable performance 

of the proposed algorithm, which can successfully track 

human using a moving camera more accurately under 

different scenarios. 
 

Index Terms—human tracking, kernel-based tracking, 

deformable part model. 
 

1. INTRODUCTION 
 
Nowadays, the development of intelligent surveillance 

system has attracted significant attention. Human tracking is 

one of the major topics in intelligent video surveillance 

systems. By tracking human in the videos, it is possible to 

collect their trajectories for high level analytics and 

applications, for example, human counting, people flow 

estimation, criminal tracking, and so on.  

Human tracking can be regarded as a specific category 

of video object tracking, which has been extensively 

developed and discussed [1], [2]. According to their tracking 

schemes, they can be roughly divided into two categories:  

1) Feature-based: Most traditional methods utilize 

Kalman filter to express a target as a point in the frame, and 

the previous target state is used to make the association 

between targets and the point. Among the tracking 

algorithms, kernel-based object tracking are popular because 

of its fast convergence speed and relatively low computation. 

The idea of the kernel-based tracking is to minimize the 

difference between the target and the candidate appearance 

models constructed by spatially weighting the object with a 

kernel function in the color histogram calculations [3], [4]. 

Based on the kernel-based tracking framework, many 

improved methods have been proposed for human tracking 

[5]–[8]. In [9], the authors generalize the constrained 

multiple-kernel (CMK) tracking by adaptively adjusting 

kernels’ widths and weightings according to their similarity, 

so as to improve the reliability in case of occlusion. 

However, the performance of the kernel-based tracking may 

become degraded due to the fact that fast changing color 

information during the tracking with moving cameras. 

2) Detection-based: Recently, many approaches track 

objects based on object detection because of the robustness 

and effectiveness of detectors [10]–[13]. One of the most 

popular detectors is the deformable part model (DPM) [12], 

which uses a root model and several part models to describe 

different partitions of an object. The part models are 

spatially associated with the root model according to the 

predefined geometrical configuration, so as to precisely 

depict the object. By applying a detector to each frame of 

video sequence, the tracking scheme becomes a task to 

associate the detected objects with each other frame-by-

frame. Such tracking-by-detection scheme is widely used in 

tracking human either in a static camera or a moving camera 

[14]–[18]. Instead of performing detected object association 

individually frame-by-frame, many approaches [19]–[21] 

have been proposed to formulate the association of detected 

object problem as a minimum-cost flow network problem. 

These methods globally optimize the trajectories of all 

objects, instead of locally optimizing for each object. 

Although these detection-based methods have good 

performance and show the robustness and effectiveness, the 

high computational cost due to pyramid scanning for 

different scales during the detection is always considered as 

a serious drawback of the detection-based methods.  

In this paper, we propose an innovative deformable 

multiple-kernel (DMK) tracking algorithm, which efficiently 

combines the multiple-kernel based tracking and the object 
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detector, to overcome the issues mentioned above. More 

specifically, we integrate the DPM into the constrained 

multiple-kernel tracking, by regarding each part model as a 

kernel. The deformation costs of the part models are 

considered as the constraints to bind the kernels with each 

other into the most appropriate configuration. Given a 

detected object to be tracked, the proposed algorithm first 

mean-shift the kernels, which correspond to various parts of 

the DPM model, based on spatially weighted color 

histogram features, to the new locations in the next frame. 

These parts are then mean-shifted again based on HOG 

features of the current frame with respect to the 

corresponding part models which are pre-trained by the 

DPM detector. Instead of constraining kernels based on 

some pre-defined geometrical relationship as used in the 

CMK tracking [9], the proposed algorithm utilizes the 

deformation cost, which is statistically inferred from the pre-

trained DPM detector, to restrict the movement of each 

kernel (i.e., part model). These two steps are alternatively 

operated to accurately locate the human target in each frame. 

The rest of the paper is organized as follows. In Section 

2, the technical overview of the algorithms adopted in our 

proposed DMK scheme, including mean-shift tracking and 

DPM, is presented. Section 3 depicts the details of the 

proposed DMK tracking framework and the integration of 

the DPM reconfiguration into the CMK tracking. The 

experimental results are shown in Section 4, followed by the 

conclusion in Section 5. 
 

2. ADOPTED ALGORITHMS 

 

2.1. Mean-Shift Tracking 
 
The idea of mean-shift tracking [3] is to iteratively compute 

the closest candidate whose feature sample distribution is 

most similar to the target’s ones. In the candidate model, a 

feature sample corresponding either to the color or texture 

appearance at location x has its associated metric weight 

w(x), which defines the measurement of similarity between 

the feature sample and the target model. Generally, the 

mean-shift tracking method moves the object centroid by the 

mean-shift vector δx. In other words, given the initial object 

location x0, the new object location x1 can be calculated 

by 1 0  x x x , where the mean-shift vector δx is: 
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Note that the denominator is used for normalization; 

1...{ }i i Nx is the pixel locations of the candidate model, and 

k(•) is a symmetric kernel with bandwidth h’. 
 

2.2. Deformable Part Model (DPM) 
 
The DPM [12] represents an object by a so-called star model, 

which comprises a coarse root model and several part 

models (or filters). The root model approximately denotes 

the entire object, while the part models denote smaller parts 

of the object with higher resolution. In DPM, a model for an 

object with M parts can be defined by an (M + 2)-tuple:    

(F0, P1,…, PM, b), where F0 is a root filter, Pj is a model for 

the j
th

 part, and b is a real-valued bias term. Each part model 

Pj is defined by a 3-tuple: (Fj, vj, dj), where Fj is a filter for 

the j
th

 part, vj defines a 2-D “anchor” position for the j
th

 part 

relative to the root position, and dj is a 4-D vector which 

contains coefficients of a quadratic function. The filters are 

expressed in a form of concatenated vectors, i.e., an mj × nj 

filter is represented as a 1-D vector with dimension of (mj × 

nj). The quadratic function defines a deformation cost for 

each possible offset of the part relative to the anchor 

position. If a part moves away from the centroid of the filter, 

the deformation cost becomes larger.  

To detect a specific object in an image, the image is first 

down-sampled and up-sampled like a pyramid, and then the 

matching score of each object hypothesis ranged by a sliding 

window is computed to decide how likely the object is. The 

matching score is defined by: 
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where ϕ(xj, l) is the j
th

 concatenated HOG vectors at the l
th

 

level of the pyramid, ϕd(dx) = (dx, dy, dx
2
, dy

2
), is the 

_________ deformation feature, dxj = xj – (2x0 + vj),  

_______is the displacement of the j
th

 part relative to its 

anchor, and the bias term b is used to determine which 

viewing perspective component of the model is used. 
 

3. DEFORMABLE MULTIPLE-KERNEL TRACKING 
 

Inspired by the CMK tracking [9], which describes an object 

by multiple kernels that are bound together by several proper 

constraints, in our DMK tracking we regard each part model 

as a kernel and use deformation costs to restrict the 

movements of the kernels during the tracking. Therefore, the 

proposed algorithm iteratively mean-shift the kernels based 

on weighted color histogram and HOG, so as to take 

advantage of not only low computation owing to the kernel-

based tracking but also the robustness of the DPM detector. 
 

3.1. Tracking Scheme 
 
Fig. 1 shows the flowchart of our proposed DMK scheme. 

Given an object of interest to be tracked, either by detectors 

or users’ manual identifications, we first define the whole 

object as the root kernel. From the size (in terms of pixel) of 

the root kernel (h0 × w0), we choose the viewing perspective 

component of the model whose (m0 / n0) is closest to (h0 / 

w0). Then, the part kernels are placed according to the 

“anchor” position relative to the root kernel. Each part 

kernel’s size (hj × wj) should be proportional to the size of 

the root kernel (h0 × w0), such that the aspect ratio of the part 

2
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kernel size to the root kernel size is equal to that of the part 

filter size to the root filter size, i.e.,  

0 0j jh h m m , and 0 0j jw w n n . (3) 

Once the kernels are determined, the proposed algorithm 

searches the local maximum of both color and HOG 

similarity. First, we compute the color based (i.e., spatially 

weighted color histogram) mean-shift vector _____ for the 

j
th

 kernel, based on Eq. (1), and then shift this kernel by 

_____. This step is iteratively processed until the maximum 

iterations T
color

 is reached. Second, we compute the DPM 

based mean-shift vector ____ , and then shift the j
th

 kernel 

by ____, iteratively until the maximum iterations T
dpm

 is 

reached. 

Since background subtraction cannot be applied in the 

moving camera scenarios, no explicit segmentation masks 

can be created, we thus create an ellipse mask for each 

kernel when calculating either the weighted color or HOG 

histograms. When calculating______, we use the K-L 

distance as the measurement of the similarity, i.e., w(xi) 

introduced in Eq. (1). Also roof kernel [8] for spatial 

weighting is adopted by k(•). Furthermore, ____  is weighted 

by the similarity of the j
th

 kernel simij(xj). As for        , the 

measurement of the similarity at {xi}i = 1…N is based on 

calculating matching score between the HOG within an (hj × 

wj) block centered at each xi and the corresponding DPM 

filter. Since the HOG models are trained in a specific scale 

level, the frame should be resized to the same scale level, so 

as to well match the HOG. Thus, the proposed algorithm 

determines the number of scale level λ by: 

      2 0 0 2 0 0min log ,logcell cellw n s h m s    , (4) 

where scell is the cell size pre-defined in the DPM. The size 

of the frame is converted (down-sampled or up-sampled 

depending on the sign of λ) by a factor 2
λ
, so that the HOG 

extracted from the target can be well matched with that of 

DPM. Therefore, to compute the mean-shift vector, we 

consider the matching score at each xi as w(xi) in Eq. (1). 

For each (say the j
th

) kernel, the matching score at each xi 

location can be defined as 

,( ) ( , ) ( )j i j i j d i jw F d d        x x x , (5) 

where (∙)* represents the normalized vector, Fj and dj are 

provided by DPM, and dxi,j = xi,j – (2x0 + vj) is the 

displacement of the j
th

 part kernel relative to the root kernel. 

As shown in Eq. (5), if the second term is larger than the 

first term, wj(xi,j) is negative ____ and  cannot be correctly 

computed. To avoid this situation, we normalize ____ by the 

summation of the |wj(xi,j)|, i.e.,  
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Again, _____is further weighted by the color similarity of 

the j
th

 kernel simij(xj). The reason we use color similarity 

here is that color is more distinctive to tell one object from 

another, especially when occlusion occurs.  
 

3.2. Kernels Aggregation 
 
After both color based and DPM based mean-shift, multiple 

part kernels are aggregated to determine the newly tracked 

position of an object, i.e., the center of the target: 

 1final root partc c c      , 2
finalc  , (7) 

where croot = x0 = (x0, y0) is the center of the root kernel, and 

cpart is defined by 

    1 1
( ) ( )

M M
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c c simi c c simi
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where previous target’s center cprev, and cj is the relative 

object’s center derived from xj, i.e., cj = (xj －  vj)/2, vj 

denotes the anchor of the j-th part kernel. The weight simij(xj) 

reflects how well the candidate features match the target 

features; a higher simij(xj) refers to higher confidence of the 

kernel. α∈[0,1] is a parameter to balance the importance 

between the root kernel and part kernels. We choose α = 0.6 

in this paper.  
 

3.3. Scale Issue 
 
The proposed algorithm updates the scale (size) of the target 

if the target is moving toward or away from the camera. We 

adopt the scale updating mechanism in [9], which utilizes 

derivative of the density estimator f(h’) with respect to the 

kernel bandwidth h’. Hence, the proposed algorithm applies 

the change of the scale △s = －β·▽f(h’), i.e., 

( ) (1 ) ( 1)s t s s t    , (9) 

where β is the step size and has an empirical value of β = 

9000 in this paper. 
 

4. EXPERIMENTAL RESULTS 
 
Our simulation scenarios are mainly in tracking a specific 

person in a moving platform (camera), where traditional 

background subtraction is not suitable for the foreground 

extraction. The experiment settings for the case of recorded 

videos and the real-time moving platform are separately 

described in this section. All the videos associated with the 

simulations reported in this paper can be viewed from our 

website
1
. 

                                                                                              
1
 website: http://allison.ee.washington.edu/kuanhuilee/dmkt 
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Fig. 1. Tracking scheme in each frame for deformable multiple-kernel 

(DMK) tracking. 
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4.1. Tracking in Recorded Videos 
 
To demonstrate the performance, we test several video 

sequences in the ETH Mobile Scene (ETHMS) dataset [15] 

and our own recorded videos. The targets are manually 

selected in the beginning and then DMK is applied to 

continuously track them. For the mean-shifting tracking, we 

choose Tcolor = 5 and Tdpm = 3. Fig. 2 shows the typical visual 

results of the DMK tracking, which tracks people well in 

case of moving cameras. To further evaluate the 

performance, we use the pixel error, which is defined as the 

average distance of the objects’ corners (left, top, right, and 

bottom of the bounding box) between the simulation results 

and ground truth, provided by ETHMS and our manually 

labeling. To demonstrate the performance, we compare two 

kernel-based tracking methods, one is the single kernel 

mean-shift [3] and the other is the constrained 2-kernel 

mean-shift tracking [9]. Table I shows the average error of 

these competing algorithms on the tested datasets, where the 

results show the robustness and performance improvement 

of our proposed method. This is because both methods [3] 

and [9] search the target only based on the color similarity, 

but the proposed method further search the target based on 

HOG similarity, i.e., DPM similarity. In the case of 

UWCP_1, where the target is severely occluded by other 

pedestrians, the proposed method shows the effectiveness 

and the robustness of handling the occlusion issues. 
 
4.2. Tracking in Real-Time Moving Platforms 
 
The moving platforms used in our experiments are self-built 

mobile robot “Patsy” and AR Drone 2.0 [22], both operated 

under the Robot Operating System (ROS). The Pasty is 

equipped with a 1.6GHz CPU and WiFi connection. In order 

to achieve better real-time performance, we use another 

laptop computer with a 3.0GHz CPU to remotely compute 

the tracking algorithm. Additionally, we apply video 

stabilizer for the drone to stabilize the recorded vibrating 

video frames during the flight. Both systems using DMK 

tracking allow either the Patsy or AR Drone to continuously 

follow the tracked human. As for the parameters used in 

DMK tracking, we choose Tcolor = Tdpm = 3. Fig. 3 shows the 

visual results from the perspective views of the moving 

platforms. More demo videos are also available on our 

website
1
. 

 

5. CONCLUSION 

 

This paper proposes an innovative DMK tracking algorithm, 

which efficiently integrates the DPM into the multiple-kernel 

tracking. Multiple kernels alternatively search the local 

optimal based on color and DPM information, and kernels 

are bound with each other owing to the deformation costs. 

The proposed algorithm takes advantage of not only low 

computation owing to the kernel-based tracking, but also 

robustness of the DPM detector, so as to successfully track 

objects more accurately. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2. Visual tracking results of tracking specific people in the tested 

dataset: (a) BAHNHOF, (b) JELMOLI, (c) UWMDR_1, (d) UWMDR_2, 

(e), and (f) UWCP . 

 

 
(a) 

 
(b) 

Fig. 3. Visual tracking results from the perspective views of the moving 

platforms: (a) Patsy, and (b) AR drone 2.0. 

TABLE I Average Error (Pixel) 

Dataset Method [3] Method [9] Proposed 

BAHNHOF_1 64.83 59.50 27.50 

BAHNHOF_2 60.24 50.41 36.28 

JELMOLI_1 67.69 62.35 37.73 

JELMOLI_2 78.55 69.08 45.70 

UWMDR 1 136.2 117.3 90.48 

UWMDR 2 115.8 153.6 72.65 

UWCP_1 424.2 129.8 32.99 
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