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ABSTRACT

To accomplish effective communication, interaction partners gener-
ally adapt their verbal and non-verbal behavior to that of their inter-
locutors. This behavior adaptation is often modulated by the under-
lying emotional states of partners. Modeling such mutual behavioral
influence is critical for emotion characterization in an interaction. In
this paper, we focus on explicitly modeling the mutual influence of
multimodal behavior (speech and hand gesture) in affective dyadic
interactions. In our framework, the behavior adaptation in each in-
teraction is modeled by an interaction matrix which assembles all
behavioral information on the path between the dyad’s behavior. Ex-
perimental results show that our modeling approach can significantly
improve the performance of emotion recognition. We further inves-
tigate the properties of the interaction model. Analysis results reveal
that the entrainment effect of dyad’s behavior can be better embodied
by interaction modeling, and that the interaction patterns captured
by interaction matrices are dependent on the emotional states of in-
teraction partners. These observations corroborate the validity of our
interaction model for capturing emotion-dependent mutual influence
of dyad’s interaction behavior.

Index Terms— Multimodal behavior, emotion recognition, be-
havior entrainment, interaction modeling, mutual influence

1. INTRODUCTION

During social interactions, interpersonal influence is naturally in-
duced along aspects of spoken words, speech prosody, body ges-
tures and emotional states. To accomplish effective communication,
individuals generally adapt their verbal and non-verbal behavior to
that of their interlocutors. Such behavior adaptation, also known
as entrainment or coordination, includes synchronizing in time or
displaying similar or dissimilar behavior [1]. The mutual behav-
ior effect controls the dynamic flow of a conversation and describes
the overall interaction patterns. Understanding human interaction
mechanisms and computationally modeling interaction dynamics of
human behavior can bring insights into automating emotion recog-
nition as well as the design of human-machine interfaces.

The entrainment phenomenon in human communication in
terms of vocal patterns, head motion, or body gestures has been
well-established in both psychology and engineering domains. Lev-
itan et al. have found that interacting partners tend to utilize similar
sets of backchannel-preceding cues which are a combination of
speech cues of an individual in response to one’s interlocutor [2].
The work in [3] has demonstrated a high degree of unintentional
coordination between rhythmic limb movements of two partners.

Robotics research has shown that human subjects use the robot’s
cues to regulate conversations and to convey affective intentions,
resulting in a smoother interaction with fewer interruptions [4].

Since emotion is one of the major elements influencing multi-
modal channels of human speech, body gestures, or facial expres-
sions, the interaction patterns of a dyad’s behavior are accordingly
shaped by the underlying emotional states [1]. For example, two
participants with friendly attitudes may tend to approach each other,
while those with conflictive attitudes may try to fight with or avoid
each other. The analysis in our previous work [5] has empirically re-
vealed that the coordination patterns of a dyad’s behavior depend on
the interaction stances assumed (e.g., friendly vs. conflictive). Lee et
al. also investigated the relationship between affective states (posi-
tive vs. negative) and the vocal entrainment strength in married cou-
ples’ interactions. A higher degree of vocal entrainment was found
for couples with positive attitudes [6]. They further proposed a PCA-
based scheme to quantify the turn-wise vocal entrainment for more
complex interaction scenarios, and demonstrated its effectiveness for
differentiating positive or negative affect [7].

Motivated by these findings on the interrelation between emo-
tions and interpersonal influence, researchers have attempted to
model such mutual effect of emotions for assessing the emotional
states of individuals [8] [9]. The benefits of incorporating mutual in-
fluence into the emotion recognition framework have been validated
in these studies. There has also been much research attention on
modeling the behavioral interaction for action recognition [10] [11].
Most of these studies have relied on training with statistical models,
e.g., coupled HMMs, which usually require significant amounts of
data. Mariooryad et al. exploited emotion-related patterns in be-
havioral interaction [12], which is similar to this work. However,
they simply concatenated behavioral information of two partners for
assessing the emotional state of an individual without modeling the
latent interaction structure of the dyad’s behavior.

In this work, we propose an unsupervised subspace-based ap-
proach for quantitatively modeling the mutual influence of multi-
modal behavior (speech and hand gesture) in affective dyadic inter-
actions. Our interaction model is inspired by a geodesic flow-based
methodology for the problem of domain adaptation which explores
the sharing characteristics of two distinct datasets [13]. In our frame-
work, the behavior adaptation from the interlocutor to the target par-
ticipant in an interaction is parameterized by a geodesic flow con-
necting the behavior subspaces of the two interaction partners. The
association of the dyad’s behavior is then modeled by an interac-
tion matrix that is obtained by aggregating all behavior information
on the geodesic path. We evaluate the effectiveness of the interac-
tion model in multimodal emotion recognition. Experimental results
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show that the recognition performance can be significantly improved
by interaction modeling. We further study the properties of the inter-
action model in the aspects of expressing behavior entrainment and
capturing emotion-dependent interaction patterns. Analysis results
reveal that the turn-wise entrainment effect of speech or hand gesture
becomes more pronounced by interaction modeling, and that inter-
action patterns embedded in interaction matrices are dependent on
the emotional states of interaction partners. These observations cor-
roborate the validity of the interaction model for capturing emotion-
related mutual influence of dyad’s interaction behavior.

2. DATABASE DESCRIPTION

In this work, we use the USC CreativeIT database for dyadic inter-
action modeling [14] [15]. It is a multimodal database of dyadic
theatrical improvisations performed by pairs of actors. Interactions
are goal-driven; actors have predefined goals, e.g., to comfort or to
avoid, which can elicit natural realization of emotions as well as
expressive multimodal behavior. There are 50 interactions in total
performed by 16 actors (9 female). The audio data of each actor was
collected through close-up microphones at 48 kHZ. A Vicon motion
capture system with 12 cameras captured the detailed full body Mo-
tion Capture (MoCap) data at 60 fps, i.e., the (x, y, z) positions of
the 45 markers of each actor, as shown in Fig. 1(a).

(a) Motion Capture Markers. (b) Angles for hand joints.

Fig. 1. (a) The positions of the Motion Capture markers; (b) The
illustration of Euler angles for hand joints.

2.1. Gesture and Acoustic Features

This work focuses on multimodal behavior of speech and hand ges-
ture which are highly expressive forms in human communication.
We manually mapped the motion data, i.e., the 3D locations of
markers, to the angles of different human body joints using Mo-
tionBuilder [16]. The joint angles are popular for motion animation
[17] [18] and have also been applied for exploring attitude-related
gesture dynamics in our previous work [19]. Fig. 1(b) illustrates the
Euler angles (θ, φ, ψ) of hand joints (arm and forearm) in x, y, z
directions. The angles of both right and left hand joints are used as
hand gesture features. In addition, we extracted acoustic features
of pitch and the rms energy, as well as 12 Mel Frequency Cepstral
Coefficients (MFCCs) for each actor. These features were extracted
every 16.67 ms (60 fps) with an analysis window length of 30 ms, in
order to match with the MoCap frame rate. The pitch features were
smoothed and interpolated over the unvoiced/silence regions. We
further augment both hand gesture and acoustic features with their
1st derivatives to incorporate the temporal dynamics.

2.2. Emotion Labels

The emotional state of each actor was annotated in terms of activa-
tion (excited vs. calm) and valence (positive vs. negative) by three or

Fig. 2. Illustration of setting up dialog turn pairs. The target dialog
turns are with emotion annotations.

four annotators. To preserve the continuous flow of body gestures
during an improvisation, we annotated time-continuous emotion for
each actor throughout the interaction. Annotators used the Feeltrace
instrument [20] to time-continuously indicate the emotion attribute
value from −1 to 1 for each actor while watching the video record-
ing. More details of the annotation process can be found in [21].

As described in [21], we define the inter-rater agreement for the
continuous emotion annotations as the linear correlation between
two annotators. For each actor recording, we compute the corre-
lation between every pair of annotators and only keep the annotator
pairs with correlations greater than 0.5. We further partition each
actor recording into dialog turns according to speech regions. As a
result, we have 1230 annotated dialog turns (referred to as the target
turn hereafter) in total. Each target turn is paired with the corre-
sponding interlocutor’s previous turn, as illustrated in Fig. 2. Our
work focuses on modeling interaction behavior between the paired
dialog turns. The values of activation and valence of each target turn
are calculated by averaging the annotations among frames and across
annotators. We jointly consider activation and valence by creatingK
emotional clusters in the valence-activation space using k-means al-
gorithm. Such K-class recognition scheme has also been adopted in
[12] [22]. We consider clusters with K = 2 and K = 3, and Fig. 3
shows the corresponding clustering results.

(a) K = 2. (b) K = 3.

Fig. 3. Resulting emotion classes in the valence-activation space for
K = 2 and K = 3.

3. GEODESIC FLOW-BASED INTERACTION MODELING

Our objective is to model mutual influence of a dyad’s multimodal
behavior in an interaction. The main idea of our interaction model
is inspired by a geodesic flow-based methodology for the problem
of domain adaptation that explores the sharing characteristics of two
distinct datasets [13]. The two datasets are the behavior character-
istics of two interaction partners in our case. This method explic-
itly constructs an infinite-dimensional feature spaceH∞ assembling
all geometric and statistical information on the path between two
datasets, i.e., the dyad’s behavior. Thereby, H∞ is assumed to cap-
ture the behavior connection of the two partners.

We assume the behavior characteristics of each participant in an
interaction can be embedded in a low-dimensional linear subspace

2235



P ∈ RD×d, where D is the feature vector dimensionality and d is
the subspace dimensionality. The collection of all d-dimensional
subspaces of D-dimensional vectors constitute the Grassmannian
Gr(d,D). We compute subspaces respectively for the target and
interlocutor behavior in an interaction, both of which can be seen as
two points on Gr(d,D). To model the interaction of a dyad’s mul-
timodal behavior, we focus on establishing connection of the two
behavior subspaces on Gr(d,D). We believe that such subspace
connection can accordingly capture the dyadic interaction in the be-
havioral feature space.

Let PT , PI ∈ RD×d denote the two sets of bases of the sub-
spaces for the target and interlocutor behavior in an interaction, re-
spectively. The incremental changes between PT and PI can be
parameterized by the geodesic flow that defines the shortest path be-
tween two points on Gr(d,D). The geodesic flow between PT and
PI is expressed as Φ(t) ∈ Gr(d,D):

Φ(t) =
(

PI RI

)( U1 0

0 −U2

)(
Γ(t)

Σ(t)

)
,

where t ∈ [0, 1] and RI is the orthogonal complement to PI . Par-
ticularly, Φ(0) = PI and Φ(1) = PT . U1 and U2 are orthogonal
matrices given by generalized singular value decomposition (SVD),(

PT
I PT

RT
I PT

)
=

(
U1 0

0 U2

)(
Γ

−Σ

)
VT .

The singular values on the diagonals of Γ and Σ are cos(θi) and
sin(θi). Accordingly, Γ(t) and Σ(t) are diagonal matrices with
elements cos(tθi) and sin(tθi) respectively.

Given two original D-dimensional behavior vectors xT and xI

from the target subject and the interlocutor, their projections into a
subspace Φ(t) for a t ∈ [0, 1] are Φ(t)TxT and Φ(t)TxI . These
projections integrate the behavioral characteristics of both inter-
action partners, since the geodesic flow parameterizes the gradual
adaptation from the interlocutor to the target participant. To model
the mutual effect of a dyad, we utilize all subspaces Φ(t) on the
geodesic flow. Concatenating projections into all subspaces, we
obtain feature vectors z∞T and z∞I in an infinite-dimensional feature
spaceH∞. The inner product of z∞T and z∞I is given by,

〈z∞T , z∞I 〉 =
∫ 1

0
(Φ(t)T xT )T (Φ(t)T xI)dt

= xT
T (

∫ 1

0
Φ(t)Φ(t)T dt)xI

= xT
T GxI ,

where the matrix G ∈ RD×D is defined as geodesic flow kernel in
[13] and can be easily obtained from the above equations. Since G is
positive semidefinite, we further decompose it as G = MMT . We

compute M by SVD: M = UgΓ
1
2
g , where G = UgΓgV

T
g . M ∈

RD×D embeds behavioral association of a dyad in an interaction.
We refer to M as the interaction matrix.

4. MULTIMODAL EMOTION RECOGNITION

In this section, we assess the effectiveness of the interaction model in
multimodal emotion recognition, i.e., evaluating the emotional state
in a target turn using multimodal behavior of a dialog turn pair. To
this end, we conduct the mapping for both target and interlocutor

features using the interaction matrix M per interaction: f = MTx,
where x represents a behavioral feature vector described by speech
(audio) or hand gesture (visual) features. The new feature vector f
contains the interaction information induced by M. For compari-
son, we also evaluate the recognition performance using two base-
lines: 1) only the behavioral features of the target turn, i.e., xT ;
2) both behavioral features of the target and interlocutor turns, i.e.,
xT and xI , which have also been applied in [12]. For each target
or interlocutor turn in a dialog turn pair, eight high level statistical
functionals are extracted from either mapped or baseline behavioral
features: mean, median, standard deviation, range, lower quartile,
upper quartile, minimum and maximum. We adopt the leave-one-
interaction-out scheme and linear SVM in the experiment. In the
interaction model, we apply principal component analysis (PCA) to
identify subspaces PT and PI ∈ RD×d for the target and inter-
locutor behavior in each interaction. The subspace dimension d is
determined using cross-validation on the training set.

Table 1 presents the results for recognizing 2-Class and 3-Class
emotions in the valence-activation space (see Fig. 3) in different con-
ditions. Firstly, we can observe that speech cues generally show
a higher discriminative power for distinguishing emotional dimen-
sions in contrast to hand gesture behavior. One possible reason
could be that the activation dimension can be better perceived from
audio cues [23]. Furthermore, the inclusion of interlocutor infor-
mation generally improves the recognition performance, compared
to the performance with the target only information. These results
are consistent with the findings in [12], validating that the inter-
locutor’s multimodal behavior provides complementary information
about the emotional state of the target subject during a dyadic in-
teraction. More importantly, our interaction model significantly out-
performs the two baselines in all cases. For example, the recognition
accuracy is 58.7% and 61.8% respectively using the audio-visual
information from the target turn and from both dyadic turns. The
performance improves to 71.8% with interaction modeling. This
observation corroborates that the dyad’s behavior under such model-
ing can serve as improved indicators of the displayed emotion in the
target turn, namely the interaction matrix M effectively embeds the
dyadic behavior coordination.

Table 1. Accuracies (%) for recognizing 2-Class and 3-Class emo-
tions in the valence-activation space from information of the target
turn (T ), information from both target and interlocutor turns (T + I)
[12], and using interaction modeling (Interaction).

K = 2 [Chance level: 50%] K = 3 [Chance level: 33%]

Features T T + I Interaction T T + I Interaction

Audio 58.5 59.7 69.0 47.0 45.0 54.5

Visual 57.8 61.9 65.5 39.6 44.0 52.4

Audio-Visual 58.7 61.8 71.8 45.6 46.2 55.9

5. ANALYSIS OF MODELING RESULTS

In this section, we further study the properties of the mutual influ-
ence model to better understand its benefits for emotion characteri-
zation in an interaction.

5.1. Analysis of Behavior Entrainment

Section 4 empirically validated that the interaction model is effec-
tive in capturing the dyadic behavior cohesiveness for multimodal
emotion recognition. Herein, we focus on explicitly measuring such
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cohesiveness and examining whether the dyadic entrainment can be
better embodied with interaction modeling.

We apply the PCA-based entrainment measure proposed in [7]
to quantify the turn-wise behavioral coordination. Given two sets
of behavior observations XT from the target turn and XI from the
interlocutor turn, we respectively compute the subspaces WT and
WI ∈ RD×dW from each set. The subspace dimensionality dW is
the minimum number of eigenvectors covering 90% total variance of
each behavior set. The turn-wise entrainment metric is defined as,

En(XT ,XI) =
1

dW
trace(WT

T WIWT
I WT ). (1)

A larger En value indicates a higher entrainment level.
We compute the entrainment measure for each pair of dialog

turns using the original feature set X (audio or visual) or the mapped
feature set MTX. We also examine the computed entrainment mea-
sures w. r. t. 2-Class emotion labels (see Fig. 3(a)). Table 2 presents
the average turn-wise entrainment values in each emotion class.
Firstly, we can observe that the entrainment values of speech or
gesture behavior have been improved by interaction modeling. This
improvement in all cases is statistically significant with p � 0.01,
suggesting that the interpersonal mutual influence becomes more
pronounced in the interaction space induced by M. In addition, the
speech behavior exhibits a much higher entrainment level compared
to the gesture behavior. This might be due to greater gesture vari-
abilities across persons and over different temporal scales. We also
find that the inter-emotion difference in entrainment values can be
boosted with interaction modeling. For example, a statistical dif-
ference of gesture entrainment (p = 0.03) has been found between
Class I and II after interaction modeling, while such difference is
not observed for the original gesture features.

Table 2. The average entrainment values in each emotion class with
original and mapped multimodal behavioral features.

Class I Class II Class I Class II

Feature Original Mapped
Audio 0.6414 0.6374 0.6908 0.6773

Visual 0.2745 0.2892 0.3515 0.3728

5.2. Analysis of Interaction Patterns

As introduced in Section 1, the patterns of mutual behavior influence
are usually shaped by the underlying emotional states of partners [5].
Since we have shown that the interaction matrix M of an interaction
can effectively capture the mutual influence of dyadic behavior, we
further investigate how the interaction patterns rooted in M depend
on the overall emotions of two interaction partners.

For this purpose, we have at lease three annotators rate the over-
all activation and valence for each actor in an interaction on a 9-point
scale. The inter-rater agreement for both activation and valence is
around 0.7. The global rating of each actor in an interaction is de-
scribed by the average value across annotators. Similar to the emo-
tion processing in Section 2.2, we create two emotion clusters in the
valence-activation space based on the global emotional ratings. The
distribution of the two clusters is similar to Fig. 3(a). Thereby, inter-
actions can be grouped into three categories: in Type I or III, both
actors have the same emotion label of Class I or Class II; in the in-
congruent Type II, one actor has a Class I label while the other is
with a Class II label.

We examine the difference between interaction patterns within
an interaction group as well as across groups. The interaction pattern
difference is measured by the distance between interaction matrices
of two interactions. According to Section 3, M is an orthogonal
matrix. Therefore, the distance between two interaction matrices
MA and MB is defined using the Binet-Cauthy metric [24]:

dist(MA,MB) = (1−
∏

cos2(θi))
1
2 , (2)

where θi are the principal angles between MA and MB [25].
Fig. 4 visualizes the average distances between pairwise inter-

action matrices within an interaction category as well as across cat-
egories. These distances are computed with respect to interaction
matrices of speech (Fig. 4(a)) and hand gesture (Fig. 4(b)). A darker
color indicates a smaller distance. As can be seen in Fig. 4, the
average distance is much smaller within the same group than that
computed across groups. This observation validates that the mutual
influence model is capable of capturing emotion-dependent interac-
tion patterns, which can further increase the discriminative power for
emotion recognition. Moreover, we can observe the most difference
between the interaction patterns in Type I and Type III, which may
result from the fact that the two groups are the most distant in terms
of emotions.

(a) Audio (b) Visual

Fig. 4. Average distances between pairwise interaction matrices
within an interaction category and across categories.

6. CONCLUSIONS AND FUTURE WORK

In this work, we focused on explicitly modeling the mutual influ-
ence of multimodal behavior in affective dyadic interactions. In our
framework, the behavior adaptation from the interlocutor to the tar-
get participant in an interaction is captured by an interaction matrix
which assembles all information on the geodesic path between the
dyad’s behavior subspaces. The experimental results demonstrated
that our interaction model can significantly improve the performance
of emotion recognition over the baseline features. We further inves-
tigated the properties of the interaction model. Analysis results re-
vealed that the entrainment effect of a dyad’s behavior becomes more
prominent by interaction modeling, and that the interaction patterns
embedded in interaction matrices depend on the emotional states of
interaction partners. These observations corroborated the validity of
the interaction model for capturing emotion-related interaction dy-
namics of multimodal behavior.

In the future, this mutual influence model can be extended by
incorporating temporal dynamics at either frame or turn level over an
interaction. This study enables us to develop more natural interaction
interfaces which can robustly monitor the emotional states of human
users in real-time and appropriately adjust its behavior to achieve
user satisfaction.
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