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ABSTRACT
Perceptual quality for media compression algorithms is tradi-
tionally evaluated through user studies. Such studies are time-
consuming, laborious and expensive, slowing down the devel-
opment of new signal processing algorithms. To address this
problem, a number of algorithmic quality prediction method-
ologies have been developed in the audio and video fields,
something that is currently lacking in haptics research.

In this paper, we present a novel method for predicting
the perceptual quality degradation of compressed haptic tex-
ture signals. For this purpose, abstract perceptual features like
Roughness, Brightness, etc. that capture the subjective expe-
rience of textures are exploited, in addition to low-level psy-
chophysical models from the literature. As compared to the
state-of-the-art, the presented prediction methodology shows
an approximately 30% improvement in explaining the vari-
ance in the perceptual data.

Index Terms— data compression, haptic signals, subjec-
tive/objective quality

1. INTRODUCTION

Certain haptic properties of a textured surface can be cap-
tured by scanning it with a tool and recording the generated
wideband acceleration signals (Slave-side of Fig. 1). Display-
ing these signals to the human through a vibrotactile actuator
(Master-side of Fig. 1) improves the perceived haptic realism
and task performance in teleoperation scenarios [1, 2].

Efficient communication of haptic data over a network
in a teleoperation system necessitates data compression [3].
Lossy data compression may lead to perceivable distortion in
the haptic signals, which needs to be evaluated via user stud-
ies. User studies are usually difficult and time-consuming. In
this paper, we seek to eliminate the need for such user studies
by developing an algorithm for Objective Quality Prediction
(OQP) for compressed haptic signals.

In this context, we study the distortion introduced by the
Code-Excited Linear Predictor-based haptic texture codec
presented in [3]. In this codec, a linear predictive (LP) filter
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Fig. 1: A haptic teleoperation system. The user commands the Slave
robot’s movements through the Master robot. The acceleration sig-
nals captured at the interface of the Slave robot and the object surface
are transmitted back to the Master side and displayed to the user’s
hand through a vibrotactile actuator.

captures the spectral envelope of the haptic texture signal,
while a pair of codebooks capture the salient time-domain
features. The LP and codebook parameters are vector quan-
tized before transmission to the receiver side. Starting from
an input bitrate of 32 kbps, this codec has been used to gener-
ate five compressed bitrates (3.15, 2.75, 2.45, 2.15, and 1.75
kbps), corresponding to five perceptual quality degradations
for the experiments performed in the present paper.

The remainder of this paper is organized as follows. We
first review the state-of-the-art for haptic texture OQP. Next,
user studies to generate ground-truth perceptual data for com-
pressed texture signals are described in Section 2. Section 3
presents a novel OQP method to predict the perceptual data
based on a linear combination of haptic perceptual features.
We conclude the paper in Section 4 with ideas for future work.

Related work - OQP for compressed haptic data

In [4], Okamoto and Yamada present an objective metric for
quantifying perceptual quality degradation caused by haptic
texture signal compression. Their metric is based on a spec-
tral model for vibrotactile perception mediated by Pacinian
corpuscles in the human hand [5].

In [5], Bensmaı̈a et al. hypothesize the presence of
frequency-domain Gaussian-shaped “minichannels” medi-
ating vibrotactile perception, and calculate the “activation”
generated in each of these minichannels by a given stimulus.
The perceptual dissimilarity DS1S2 between two stimuli S1

and S2 is estimated by taking the difference between the ac-
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tivations ZS1 and ZS2 they generate in the minichannels, and
summing up the absolute differences across all minichannels:
DS1S2

∝
∑

fc
|ZS1

(fc)−ZS2
(fc)|, where fc’s are the center

frequencies of 100 minichannels, placed in logarithmic in-
crements in the Pacinian frequency range (40-1000 Hz), and
minichannel activation

ZS(fc) =
∑
f

(
A2

f

T 2
f

)af

· e−
(f−fc)2

2(αfc)2 ,

where frequency f lies in (40-1000 Hz), Af is the signal am-
plitude and Tf the Pacinian detection threshold, both as func-
tions of frequency; α controls the spread of the gaussian filter.

The work in [4] supplements the above power-spectral
model with an analogous amplitude-spectral model (replacing
(A2

f/T
2
f ) with (Af/Tf )). This change accounts for Meissner

corpuscle-mediated lower frequency vibrations (tens of Hz),
which were ignored due to the inverse of the square of the (U-
shaped) Tf function. With this extension, the algorithm in [4]
is able to predict perceptual dissimilarity for compressed tex-
ture signals with a drastically improved Goodness-of-Fit (R2

= 0.64, up from 0.2 for our texture data).
The above two models capture low-level perceptual fea-

tures of texture signals by focusing only on one particular as-
pect of vibrotactile perception - the Pacinian/Meissner detec-
tion thresholds. In this paper, we additionally use high-level
perceptual features - Roughness [6], Brightness [8], Regular-
ity, time-envelope pattern [9], etc. - to predict perceptual qual-
ity data. We then combine and weight all these features to best
predict perceptual degradation (dissimilarity) data for texture
compression.

2. PERCEPTUAL QUALITY EVALUATION

In this section, we describe psychophysical experiments
conducted to generate ground-truth perceptual dissimilarity
(degradation) data for the codec input-output signals.

2.1. Subjects

Eight right-handed subjects (2 female, 6 male) with ages be-
tween 22 to 27 years volunteered for the experiments. None
of them reported having any sensory ailments that would af-
fect their perceptual performance.

2.2. Stimuli

Texture signals were recorded with an accelerometer-mounted
stylus resting on a textured surface while the surface rotated
at a constant speed. The pressing force of the probe on the
surface was also controlled to be constant. Five textures vary-
ing widely in material and surface patterns were used - a steel
texture, a rubber pad, hard wood, leather, and marble. Each
texture signal was then processed with the bitrate-scalable
codec from [3]. This resulted in five distorted output signals

per input reference signal, corresponding to five (decreas-
ing) bitrates (see Section 1). The input-output signal-pairs
were divided into 3 segments of 0.8 s each. Fig. 2 shows
input-output signals at three distortion levels for the steel tex-
ture. Each pair of input-output segments constitute a separate
stimulus pair.

Trials with ground-truth answer “different” presented the
reference and the distorted stimuli within each pair to the sub-
ject in succession, with a gap of 0.6 s. Additionally, trials with
ground-truth answer “same” were presented where the refer-
ence stimulus was repeated twice. The subject then indicated
if he perceived the two stimuli to be the “same” or “different”.

The stimulus duration was chosen to be 0.8 s to avoid
adaptation to the stimulus. The pause duration was chosen
to be 0.6 s, to avoid haptic enhancement and summation ef-
fects [10] in the display of consecutive stimuli. Each trial thus
lasted about 2.2 s, which falls within the constraint of several
seconds imposed by the haptic working memory [11]. This
was followed by a minimum 1.3 s pause, before the subject
could continue with the next trial.

2.3. Experimental setup

A custom-made stylus-like handle similar to that of the
PHANToM Omni (Fig. 1) haptic device was mounted on
the K2004E01 minishaker (see Fig. 3). The subjects were
instructed to hold the stylus like a pen in their dominant
hand with a natural 3-finger grip. Their elbow and forearm
rested on a wooden plank, which supported a natural wrist
position. Subjects wore acoustic noise-canceling headphones
(Bose QuietComfort 15) that played pink noise to mask out
auditory cues from the experimental apparatus. A cardboard
barrier visually shielded the minishaker from the subject.
This ensured that the subject only had a haptic contact with
the minishaker. Subjects interacted with the experiment GUI
through a keyboard.

2.4. Method

As mentioned in Section 2.2, subjects were asked to give bi-
nary “same/different” judgments for each pair of texture stim-
uli presented. Each stimulus pair was repeated 6 times to have
higher reliability of the results. A subject could test each stim-
ulus pair as many times as required before making a decision,
and moving on to the next pair. She/he tested 180 pairs per
texture (3 segments × 5 bitrate settings per segment × 6 rep-
etitions per bitrate setting × 2 (same or different)). About 20
min. were needed at an average for a given texture (about 4 s
per trial, and periodic rests).

2.5. Results

For a given stimulus-pair, all subject responses are aggre-
gated, and the number of “hits” (h) and “false alarms” (f) are
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Fig. 2: Three distortion levels (left to right: 3.15, 2.45, and 1.75 kbps) for a segment of the “steel” texture signal. The distorted output segment
(- - -) is shown overlapped on the input reference segment (—). Signals are zoomed in for clarity.

Fig. 3: Experimental setup (minishaker device inset).

counted:
h =

∑
(decision “different”| ground truth “different”)

f =
∑

(decision “different”| ground truth “same”)

The “hit rate” (H) and the “false-alarm rate” (F) are then cal-
culated as H = h/n and F = f/n , where n = 144 is
the number of ground-truth “same” or “different” pairs (3
segments × 6 repetitions/segment/subject × 8 subjects) for
a given texture signal and bitrate setting.

For our analyses, we employ concepts from Signal Detec-
tion Theory [12]. Specifically, we compute a parameter called
d′ that represents perceptual distance between stimuli belong-
ing to two different classes. d′ is occasionally refered to as
“dissimilarity” in this paper, similar to [5]. Low values of d′

indicate that the stimuli are not easily discriminable, whereas
high values indicate higher discriminability. d′ is calculated
as d′ = z(H)−z(F ), where z() denotes the inverse Gaussian
cumulative distribution function (assuming a Gaussian noise
model for the human sensory process).

Figure 4 shows the d′ results for all five textures. It can
be seen that d′ does not always monotonically increase as the
bitrate reduces. This can be explained by the nonlinearity of
the vector quantization operating on the LP filter parameters.
Moreover, any change in the codebook parameters propagates
into the future codec output due to the closed-loop search pro-
cedure for the excitation parameters.

3. OBJECTIVE QUALITY PREDICTION

To algorithmically predict the perceptual dissimilarities from
the user studies, we extract perceptually meaningful features

from the texture signals and combine them within a linear
model in this preliminary work. More complex nonlinear
models and powerful machine learning techniques may be ex-
plored in the future.

A number of tactile features, like the ones identified
in [8], could potentially be used - ‘slow-fast’, ‘blunt-sharp’,
‘bumpy-smooth’, ‘hard-soft’, ‘dark-bright’, ‘thick-thin’,
‘heavy-light’, etc. However, algorithmic quality prediction
requires features to have well-defined mathematical mod-
els, which are not available in most cases. This limits the
spectrum of features that can currently be exploited.

3.1. Feature definitions

A list of the following seven features was compiled, combin-
ing ones from the literature and the subjective impressions
received from subjects - Roughness [6], Brightness [8], Reg-
ularity, stimulus vertical asymmetry, and time-envelope pat-
tern [9]. We also included the Bensmaı̈a model (Section 1),
and the Okamoto amplitudes-spectral model [4] as additional
features. The eight feature definitions:

1. Roughness We calculate haptic Roughness as the loga-
rithm of the average signal power, as defined in [6].

2. Spectral centroid “Brightness” The spectral centroid
is commonly defined as the “center of mass” of the magni-
tude spectrum of a signal (sum of frequency-weighted spec-
tral magnitude samples). For haptic textures, higher spectral
centroids convey “lively” or “bright” textures.

3. Regularity The regularity of textured surfaces gets re-
flected in the periodicity of the acceleration signals, which
can be captured well with the autocorrelation function.

4. Vertical asymmetry Natural texture scans usually gen-
erate acceleration signals that are symmetric about the time-
axis. A deviation from such a symmetry causes the hand to
be forcefully “pushed” or “pulled” by the haptic device, rather
than vibrate - a perceptually very strong and disturbing arti-
fact. To capture such asymmetry we use the standard statisti-
cal measure of skewness of the signal amplitude samples.
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Fig. 4: Objective predictions ‘◦’ in comparison with the corresponding subjective results ‘?’ for all textures. The right-bottom panel shows a
comparison of the prediction performance of all features combined together ‘×’ vs. the Okamoto model [4] alone ‘�’.

5. Bensmaı̈a spectral model and 6. Okamoto model
These features, (see Section 1) are based on perceived haptic
intensity, an important consideration in the development of
technical haptic systems [13].

7. Time-envelope Most of the subjects reported memoriz-
ing the undulations of a signal as an audio pattern in their
minds, and using them for discriminating between two stim-
uli. This characteristic can be encoded well in the form of
time-domain signal envelopes [9]. We use cross-correlation
between the time-envelopes of the codec input and output sig-
nals as a measure of perceptual distance between them.

3.2. Regression modeling and validation
A linear-regression based feature-selection process filtered
the above list down to feature numbers 1, 2, 5, and 7.

A 25×8 feature-distance matrix X was formed for the
25 stimulus pairs (5 textures × 5 distortions). Each matrix
contained the Euclidean distance between the input and out-
put stimuli for that feature. The corresponding dissimilarity
results from the user studies were stacked in a 25×1 vector y.

A feature-selection algorithm (“sequentialfs” Matlab
function) was then used to select a minimal subset of fea-
tures that best predict the data in y. The algorithm started by
including all eight features at the beginning. Then it dropped
features one-by-one until there was noticeable degradation in
the prediction performance. Sum of squared linear regression
errors was used as the criterion function to select features.
Another parameter specified a threshold on the error, thus
determining when to stop.

With the reduced feature subset, the data was partitioned
into 3 textures for training a linear regression model, and the
remaining 2 textures for validation. The textures were exhaus-
tively rotated through the training and validation sets. Regres-
sion coefficients for the rotation that led to the least regression
error for all textures were selected as final feature weights.

3.3. Results
The objective quality predictions are shown in comparison
with the perceptual ground-truth for all textures in Fig. 4. Us-
ing only a combination of the Bensmaı̈a and the Okamoto
spectral models, an R2 (Goodness-of-Fit) of 0.69 is obtained
(R2 adjusted for the number of predictor variables is 0.64).
When the features described above were included on top, an
improved R2 of 0.90 (adjusted R2 0.84) was obtained. Fig-
ure 4 right bottom panel shows the superiority of the predic-
tion performance of all the features combined together against
that of the Okamoto model alone.

The weights selected for the four features were [rough-
ness: 5.2, brightness: 3.8, spectral: 6.3, time-envelope: 3.3].
It is evident that now, in combination with other features, the
Bensmaı̈a model plays a vital role in explaining the variance
in the perceptual data, followed by Roughness, and then the
other features.

4. CONCLUSION

This paper presents a novel method for algorithmically pre-
dicting perceptual quality degradations for compressed hap-
tic texture signals. We extract perceptually-motivated hap-
tic features that are vital clues for texture signal discrimini-
ation, and combine them within a linear model for quality
prediction. The results show that abstract features like Rough-
ness, Brightness, and time-envelope pattern play an important
role in haptic signal perception, in addition to low-level psy-
chophysical models. A combination of the selected features
leads to about 30% improvement over the state-of-the-art in
the performance of the quality prediction algorithm.

For future work, one major challenge is to construct math-
ematical models for haptic perceptual features that have not
been accounted for in the present work. Furthermore, the per-
formance of the proposed approach should be investigated for
a wider variety of textures.
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