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ABSTRACT

Large-scale distributed learning plays an ever-more increasing role
in modern computing. However, whether using a compute cluster
with thousands of nodes, or a single multi-GPU machine, the most
significant bottleneck is that of communication. In this work, we
explore the effects of applying quantization and encoding to the pa-
rameters of distributed models. We show that, for a neural network,
this can be done – without slowing down the convergence, or hurting
the generalization of the model. In fact, in our experiments we were
able to reduce the communication overhead by nearly an order of
magnitude – while actually improving the generalization accuracy.
Keywords: Neural Networks, Distributed Training, Compression

1. INTRODUCTION

With the sizes of today’s datasets growing to giga- and petabytes, we
see an increasing need for distributed solutions to learning problems.
In particular, in the deep learning literature, we have seen the number
of parameters in a single model reach the billions [1, 2]. This renders
training on a single node infeasible - both with respect to memory
requirements and execution time. It becomes necessary, and indeed
imperative, to distribute the computation across many machines.

However, distributed computing requires communication: data
and model parameters must be exchanged between the worker ma-
chines that collaborate on the computation. Even using the fastest
interconnects, such as InfiniBand (IB) or PCI Express 3.0 (PCIe),
this communication overhead can become a serious bottleneck and
greatly slow down the learning.

In this paper we address the problem of reducing communication
overhead in distributed learning of large neural networks.

Communication overhead arises both from the need to transfer
data to the workers, and the need to share model parameters among
them. In our work we focus on the latter, minimizing the communi-
cation overhead due to exchange of model parameters. Specifically,
we focus on gradient-based methods in a data-parallel setting [3];
i.e. where the dataset is distributed across workers, and each worker
has a complete copy of the model. During training, each worker lo-
cally updates its own model, and the updated model parameters must
periodically be synchronized among all of the workers.

The general approach to minimizing communication overhead
has been just to reduce the number of parameters that are exchanged,
e.g. by having fewer parameters in the first place by sparsifying
them, exchanging only some of the parameters, or by sending them
less frequently [4, 2].

We take a different approach – rather than impoverishing the
number of parameters exchanged, we reduce the communication
overhead by reducing the number of bits used to transmit each pa-
rameter. We achieve this by quantizing the transmitted values. The

entropy [5] of the parameters of the network vary with training
epoch, and the layer of the network that they represent. To take
advantage of this, we vary the number of bits used to quantize any
value dynamically, based on the observed entropy of the parame-
ter values in any layer, at any epoch. Additional compression is
obtained through Huffman coding [6] of the parameters prior to
transmission. The additional overhead of conveying the informa-
tion about the quantization levels and Huffman code dictionaries,
so that the machines receiving these communicated values can de-
code them, is insignificant compared to the actual number of bits
needed to represent the parameters. We are thus able to achieve a
compression of nearly an order of magnitude in the communication
overhead, for no loss of generalization error in the trained network,
as evaluated on a standard classification task.

In the process, we also achieve a second, surprising result. The
introduction of quantization noise appears to have a beneficial ef-
fect on the training. When the parameters are quantized to a slightly
higher bit rate than that required to maintain generalization error, the
resulting network actually achieves lower generalization error than
that obtained with unquantized transmission of parameters. More-
over, the training often appears to converge faster. In effect, we si-
multaneously achieve reduced communication overhead, improved
generalization error, and faster convergence by quantizing the pa-
rameters for communication.

The proposed method can also be coupled with techniques that
only transmit a subset of the parameters. Here too the parameters
could be further compressed as we propose, resulting in large reduc-
tions in the communication overhead.

The rest of the paper is structured as follows. In Section 2 we
briefly outline the training setup. In Section 3 we discuss the ratio-
nale behind our compression scheme. In Section 4 we outline our
compression algorithm. In Section 5 we provide experimental anal-
ysis of our solution, and in Section 6 we conclude with discussion.

2. DISTRIBUTED TRAINING SETUP

Our experiments were performed on a multi-GPU architecture: five
NVIDIA GTX 780s connected by a single PCIe 3.0 bus. We used a
custom neural network (NN) implementation written in a combina-
tion of Cuda and MATLAB; GPU-GPU copying was enabled by a
single MEX file that wraps a call to cudaMemCpyPeer. A worker in
this scenario, is thus a dedicated CPU thread controlling one GPU.

The NN was trained using standard Backprop with SGD and
mini-batches, exponential learning rate decay, and light `1 regular-
ization. As mentioned, we have focused solely on the data-parallel
setting, where each worker has a complete copy of the model, but
works on an exclusive segment of the dataset. For sake of consis-
tency and repeatability of our experiments, we chose a synchronous
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Fig. 1. Generalization accuracy
vs. quantization level of weights.
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Fig. 2. RMS MSE derivative w.r.t.
weights vs. training epoch.

weight exchange scheme. That is, after each epoch the workers ex-
change weights, such that they all end up having the exact same
averaged weights. This exchange can be done in various ways, de-
pending on the context, and it can be done asynchronously too [1].
Our proposed method is however agnostic to all of this, as each
transmission of parameters, from worker to worker (or e.g. slave
to master node), is completely self-contained. When a worker trans-
mits something, it must send along some quantization and encoding
meta-data; the receiver then uses that meta-data to decode and de-
quantize the signal. Whenever a worker changes anything, e.g. aver-
ages the weights it received with its own, and sends along the results
- it must first adapt the quantization and encoding meta-data; i.e. the
codebook etc. is not static.

3. PARAMETER COMPRESSION

Our solution to reducing communication overhead is to compress
parameters before transmission. In choosing a compression scheme,
we must consider many factors including cost (complexity and exe-
cution time), memory usage, effectiveness (compression ratio), and
impact on learning (the generalization error of the model). Obvi-
ously, the cost of encoding, sending, and decoding the data must be
less than simply sending the data as is. Similarly, cutting down the
cost of communication is meaningless if it affects the learning neg-
atively, such that either the generalization error increases, or it takes
considerably more iterations to converge (so that nothing is gained
with respect to the total execution time).

The model parameters to be transmitted are single- or double-
precision floating point numbers. We find simple lossless compres-
sion of these parameters through algorithms such as LZW [7] to gen-
erally be ineffective. They achieve little, if any, reduction in the size
of the data, at a significant computational cost.

Instead, we will utilize the robustness of model parameters to
minor perturbation, particularly during training, to compose an inex-
pensive lossy compression scheme through quantization. Secondly,
we will utilize the relatively narrow range within which most param-
eter values lie to further compress the parameters through a lossless
compression scheme.

In the following subsections all illustrations are based on exper-
iments on the MNist database [8] with a deep neural network com-
prising 784 units in the input layer and three subsequent layers of
size 392, 50 and 10 neurons respectively. The network is fully con-
nected between any two consecutive layers. There are thus three sets
of weights of size 784 × 392, 392 × 50 and 50 × 10 respectively.
The activation functions of all neurons were tanh non-linearities.

3.1. Quantizing the parameters

As a first try, we attempted to simply quantize all parameters to a
fixed number of bits. To quantize the values to N bits, we find the
largest and minimum values of all weights in each epoch, and evenly

split the range up into 2N bins. Each weight is quantized to the
center of the bin that it falls into. In terms of communication, it will
require only N bits to transmit any weight.

Figure 1 shows results obtained with quantization to various lev-
els. The plot shows the classification accuracy obtained with the
fully trained network, as a function of the number of bits used to
quantize the weights. The boxes show the mean, median (red line)
and standard deviation of the results obtained from 1500 runs of
training with different initializations. The accuracy obtained with 8-
bit quantization is comparable to that obtained without quantization.
This compares very favorably with the 32 bits typically required to
represent floating point numbers in IEEE format.

3.2. Dynamic Selection of Quantization Levels

As network training progresses, the derivative of the mean squared
error (MSE) being minimized with respect to the weights converges
towards a small value approaching zero, albeit in a somewhat noisy
manner. Figure 2 shows the root-mean squared (RMS) value of the
derivatives of the error with respect to network weights for each of
the three layers in our network as a function of epoch. The deriva-
tives for the third layer are scaled by 20 to fit in the plot. We note
that the derivatives converge towards zero for all layers. Also, the
derivatives are generally larger at higher layers of the network.

The derivatives are directly indicative of the degree of quanti-
zation that can be tolerated by the weights. When the derivatives
are large, relatively small perturbations of weights can result in rela-
tively large changes in the error. On the other hand, when the deriva-
tives are small, the network is tolerant to larger perturbations of the
weights. We also know that quantization to a larger number of bits
results in smaller expected quantization error, while quantization to
a fewer number of bits results in larger quantization error.

These observations together suggest that when the RMS value of
the derivative is large, a larger number of bits are required to quan-
tize the weights. On the other hand, at small RMS values of the
derivative, a smaller number of quantization levels will suffice.

This leads us to propose a dynamic selection of the number of
bits to quantize the weights. In each epoch, for each layer, we will
choose the number of bits to quantize the weights in that layer ac-
cording to the RMS value of the derivative of the MSE with respect
to the weights. Specifically, assuming the tolerance to changes in the
MSE to be some constant T , and the RMS value of the derivatives to
be G, the bin size ∆W that may be expected to perturb the objective
to within T is given by ∆W ∝ T/(G + c0), where c0 is a floor
that enforces an upper bound on ∆W . Consequently, the number of
bins that the weights are quantized to, Nbin ∝ ∆W−1 ⇒ Nbin ∝
(G+c0). The number of bits required to quantize the weights comes
out to N = logNbin = log(G + c0) + c1. c1 may be viewed as a
floor on the number of bits used to quantize the weights. To ensure
that N does not go below this value, c0 must be set to 1.0.

3.3. Lossless Compression

The distribution of the weights is not uniform in any layer. Figure
3 shows the estimated entropy of the network weights in the various
layer of the network, as a function of epoch. In each case, for N -
bit quantization we have computed the entropy from the normalized
histogram of the weights over the 2N quantization bins. The four
panels shows the entropy obtained with different levels of quantiza-
tion of the weights. Expectedly, increasing the number of bits used
to quantize the weights increases their entropy; however the overall
trend of the entropy remains the same in all cases.

The entropy is generally less than N , the number of bits used to
quantize the weights, and decreases with the epochs. This indicates
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(a) 65,536 bins / 16 bits.
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(b) 4,096 bins / 12 bits.0 20 40 60 80 100
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(c) 256 bins / 8 bits.
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(d) 64 bins / 6 bits.

Fig. 3. Computing the entropy using different sample ratios and
number of histogram bins (bits). The sample ratio (denoted SRate in
the legend), representing the fraction of the total set of weights that
was used to estimate the entropy, has very little affect. Lowering the
number of bins merely results in a shift of the entire curve.

that lossless Huffman coding of the quantized weights can result in
significant compression of the weights.

3.4. Bits Required to Quantize the Weights

Comparing Figure 3 and Figure 2 we note that the entropy is well
correlated with the RMS value of the gradient. Empirically, we find
the normalized correlation between log(G + c0) for c0 = 1 and
the entropy of the weights to be greater than 0.75 at all times, and
frequently higher than 0.95, particularly in the higher layers.

This correlation is sufficient for us to use the entropy of the
weights as a proxy for the RMS value in determining the desired
quantization. Thus we arrive at the following estimate for the num-
ber of bits required to quantize the weights in the kth level of the
network in the eth training epoch: Nk,e = Hk,e + c, where Hk,e

is the entropy of the weights in the kth layer, in epoch e, and c is a
floor on the number of bits to be used.

The above formula appears self-referential at first glance: the
entropy estimate Hk,e itself depends on the number of bits used to
quantize the weights as noted earlier. To resolve this, we compute
Hk,e from a preliminary quantization of the weights to M bits. Typ-
ically, it is sufficient to estimate Hk,e from only a small sample of
the complete set of weights. Empirically, we have found that using
as few as 3% of the total set of weights can provide us with reliable
estimates of the entropy of the weights in any layer. M is a parame-
ter we can choose. c must be empirically determined, and now also
accounts for the fact that Hk,e depends on M , since increasing M
by a factor of 2K will increase Hk,e by approximately K bits. On
the other hand, decreasing M results in smoother, and potentially
more robust estimates of the entropy as seen from Figure 3.

4. AN ALGORITHM FOR DYNAMIC COMPRESSION OF
NETWORK WEIGHTS

Algorithm 1 describes our final algorithm for compresing the net-
work weights. The output of the algorithm is a set of packaged
weights, where the package contains all the necessary information
required to decode the quantized weights to their actual values.
Algorithm 2 describes the algorithm used to decode the packaged

Algorithm 1 Weight Compression Algorithm
1: Input: WeightsWl, l = 1..L for each of the L layers in the net,

F , M , c.
2: for layer l = 1..L do
3: Find wl

max = maxw∈Wl w and wl
min = minw∈Wl w.

4: Entropy H = Estimate Entropy(W, F, wmin, wmax,M )
5: Compute the number of bits: N = H + c.
6: QuantizeWl: Ql = Quantize(Wl, w

l
max, w

l
min, N ).

7: Estimate Probability Pl = Estimate Distribution(Ql, N )
8: Huffman Codebook Cl = HuffmanCodebook(Pl).
9: EncodeQl: El = Encode(Ql, Cl).

10: Package Pl = [El, wl
min, w

l
max,Pl, N ].

11: end for
12: Output: Pl, l = 1..L.
13:
1: function QUANTIZE(W, wmin, wmax,K)
2: ReturnQ = {

⌊
2N (wmax−w)
wmax−wmin

⌋
∀w ∈ W}

3: end function
4:
1: function ESTIMATE DISTRIBUTION(Q,K)
2: Compute a 2K -bin histogram h(i), i = 1..2K fromQ.
3: Normalize the histogram : p(i) = h(i)∑

i h(i)
.

4: Return P = {p(i), i = 1..2K}
5: end function
6:
1: function ESTIMATE ENTROPY(W, F, wmin, wmax,M )
2: Select a random subsetWsel ofW of size F |W|.
3: QuantizeWsel: Qsel = Quantize(Wsel, wmin, wmax,M))
4: Estimate P = Estimate Distribution(Qsel,M )
5: Return H = −

∑2M

i=1 p(i) log p(i).
6: end function

Algorithm 2 Weight De-Compression Algorithm

1: Input: El, wl
min, w

l
max,Pl, N

2: Huffman Codebook Cl = HuffmanCodebook(Pl).
3: DecodeQl = Decode(El, Cl).
4: Wl = {wmin + (wmax−wmin)(i+0.5)

2N
∀ I ∈ Ql}.

5: Output: Wl

weights to real numbers that can be used by the receiving node.
HuffmanCodebook, Encode and Decode are standard algorithms for
computing the Huffman codebook, encoding a sequence of bits with
a given Huffman code, and decoding a stream of Huffman codes.

The parameters F , M , and c must be empirically determined.
F is the fraction of weights that are used to obtain the preliminary
estimate of entropy, H . M is the size in bits of the initial quantizer
used to obtain this preliminary estimate. c is the quantization floor.
Empirically, we have that F = 0.03, M = 4, and c = 6 provide ex-
cellent results. We present experiments that support this conclusion
in the next section.

5. EXPERIMENTS

We ran experiments to investigate the proposed method and demon-
strate its validity. The experimental setup was that described in Sec-
tion 2. Experiments were run on the 784-392-50-10 neural network
described in Section 3, on the MNIST database. In total, we ran the
Backpropagation algorithm about 1,500 times, while saving all the
parameters of the NN after each of the 100 epochs.
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5.1. Establishing Optimal Parameter Values

The proposed algorithm has three parameters: (a) the sample ratio
F , which determines the fraction of the weights we use to arrive at
H , the preliminary estimate of entropy, (b) the quantization floor c,
and (c) M , the bit size used for the preliminary entropy estimate. We
investigate the setting of each of these.
Estimating F : Figure 3 shows the entropy estimates obtained with
different sample rates in each panel. The entropy estimates do not
vary much with sample rate. We therefore set F = 0.03, i.e. 3%.
For larger networks an even lower value of F may suffice.
Estimating M and c: The optimal values of M and c are closely
coupled. First we establish the ceiling on the number of bits needed,
through fixed-size quantization. Figure 1 shows the generalization
accuracies obtained with fixed-size quantization at every quantiza-
tion level between 2 and 30 bits. We are able to recover baseline
results at 8 bits, which gives us a 75% reduction in communication
(in single-precision) by quantization alone. We therefore consider a
ceiling of 10 bits to provide room for variation.

Ideally, we must explore the entire range of (M, c) values to es-
tablish the optimal setting. Instead, we present a summary that only
considers marginal variation of each of the variables, while assuring
the reader that the conclusions noted generalize to the larger search.

In general, we can expect the dynamically assigned quantization
size not to exceed the bit-rate ceiling. The maximum value of the
preliminary entropy estimate obtained from M -bit quantization is
M . Thus, we expect c+M to be no greater than the ceiling. We use
this to first establish an effective value for M . Figure 4a shows the
generalization performance obtained on the test set when c + M =
10. Each point on the plot represents the aggregate statistics of 50
trials run with different initializations. We have varied the floor c
from 2 to 10 bits. A ceiling of 10 and a floor of 10 (represented by
“10:10” in the figure) represents fixed quantization to 10 bits. We
observe that we obtain the best results with M = 4, representing a
quantization floor of c = 6 bits. Figure 4b shows the performance
obtained at different values of the floor c, at M = 4. At M = 4, c =
5 we obtain performance just marginally below baseline, giving us
a “sweet spot” in terms of compression. It is interesting to note that
the performance with 9:5, representing M = 4 is actually superior
to that obtained with 10:5 representing M = 5.

Thus, we establish c = 5, M = 4, since this results in only
minor loss of performance. Figure 5 shows the average bit-rate per
parameter as a function of epoch. This represents an average bit
rate of 6.8 bits/parameter over all training epochs, and an overall
compression rate of 4.70.

Finally, we apply the final stage of Huffman coding to the quan-
tized weights. Figure 5 also shows the average bit-rate obtained with
Huffman coding. This results in a significant reduction of bit-rate at
every stage, and an overall average bit-rate of 3.55 bits/parameter,
representing an overall compression rate of 9.01 with respect to the
baseline with no compression.

5.2. Going beyond the Baseline

Figure 4 reveals an interesting fact. The generalization error ob-
tained with c = 6,M = 4 is actually superior to the baseline. These
results are consistent over a large number of runs of the experiment.
The mean bit rate at this setting is 3.78 bits/parameter, representing
an overall compression of 8.47.

Figures 4c and 4d show the number of iterations required for the
training to achieve convergence, where we define converegence as
the peaking of generalization accuracy. In all cases compression of
the weights results in faster convergence. At c = 6,M = 4, con-
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vergence is achieved in 20% fewer iterations than the baseline. Con-
sidering both the gains from parameter compression and the faster
convergence, we obtain an effective overall reduction of communi-
cation of a factor of 10.32, while also improving generalization error.

6. CONCLUSION & DISCUSSION

As the size of neural networks and the data used to train them in-
crease, not only will more parameters need to be communicated,
they will be done so over increasingly greater numbers of machines.
Gains such as those we report will become very important. The com-
putational overhead of compression is miniscule compared to the
actual transmission in these scenarios. Although we have presented
the compression scheme in the context of neural networks, it will
apply to gradient-descent based distributed optimimzation in gen-
eral. Moreover, it can also be combined with approaches that only
transmit a subset of parameters, for additive gains in compression.

While our results are very promising, the actual numbers re-
ported must still be considered with caution. A part of our current
work is validating these results on much larger corpora. We are also
investingating extensions to model-parallel formalisms [2].

The improved generalization results we observe are, perhaps,
not so surprising, since the effect of quantization is to introduce
quantization noise. It is well-known that noise may help a learn-
ing algorithm escape from local minima [9], and has been used in
de-noising Auto-Encoders (DAEs) [10], and other variants such as
dropout [11] and DropConnect [12]. However, it remains to confirm
our results on larger data sets and networks; this is work in progress.
We do not expect any surprises.
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