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ABSTRACT

Sparse coding algorithms with geometrical constraints have
received much attention recently. However, these methods
are unsupervised and might lead to less discriminative repre-
sentations. In this paper, we propose a supervised locality-
constrained sparse coding method for classification. Two
graphs are constructed, a labeled graph and an unlabeled
graph. Sparse codes with a labeled geometrical constrain-
t will be more discriminative, however we cannot embed
test samples with unknown label into a labeled graph. By
coupling the two graphs, we aim to make the difference be-
tween sparse codes with labeled and unlabeled geometrical
constraints as small as possible. As a result, sparse codes
of test data can be obtained with the unlabeled geometrical
constraint and the discrimination of the labeled geometri-
cal constraint is maintained. Experiments on some bench-
mark datasets demonstrate the effectiveness of the proposed
method.

Index Terms— sparse coding, supervised, manifold
learning, geometrical constraint, manifold embedding

1. INTRODUCTION

Sparse coding has been applied successfully in numerous
classification tasks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In some early
research [7, 10], unsupervised sparse coding and dictionary
learning were used, without considering the label informa-
tion. However, the sparse codes and dictionaries learned in
this way often lack discrimination as they are optimal for
reconstruction but not for classification.

Many algorithms have been proposed to enhance the dis-
crimination of visual dictionaries through supervised learn-
ing. In some previous work [5, 11, 12, 13, 14], multiple
category-specific dictionaries were learned to promote dis-
crimination between classes. In other work [3, 6, 15], the
dictionary learning and classifier training were combined into

This work is supported by the National Natural Science Foundation
of China under Project 61175116, Shanghai Knowledge Service Platform
for Trustworthy Internet of Things No. ZF1213, and Science and Tech-
nology Commission of Shanghai Municipality under research grant No.
14DZ2260800.

a single objective function, aiming at enhancing the discrim-
ination of the learned dictionary by solving the unified opti-
mization. Supervised dictionary learning by using backprop-
agation of the classification error was proposed in [1, 4, 16,
17, 18]. It was indicated that dictionaries learned via back-
propagation yield better classification performances [1, 4].

Recently, some research work suggested that image space
is actually a smooth low dimensional sub-manifold embed-
ded in a high dimensional ambient space. Standard sparse
coding fails to consider geometrical structure, and thus may
be inaccurate in modeling the manifold [19]. Meanwhile, the
over-completeness of the dictionary and the independent cod-
ing process may also result in the instability of sparse coding
[20], that is, similar features may be encoded as totally dif-
ferent sparse codes. As suggested in [19], locality was more
essential than sparsity. Locality can lead to sparsity but not
vice versa. Therefore, some research has been done to address
locality preserving or similarity preserving during dictionary
learning for image classification [8, 19, 20, 21, 22]. Gao et
al. [20] and Zheng et al. [22] proposed locality-constrained
sparse coding to preserve the local manifold structure of the
instances by embedding the Laplacian matrix into sparse cod-
ing algorithm. However these algorithms did not use labels
either.

In this paper, we propose a supervised sparse coding with
local geometrical-constraint. Our goal is to learn a discrimi-
native dictionary and sparse codes for classification problems.
Two graphs are constructed, one is a labeled graph, in which
each data point is connected with its nearest neighbors in the
same class; The other is an unlabeled graph, in which each
data point is connected with its nearest neighbors, which may
have different labels. In the labeled graph, a block diagonal
similarity matrix is calculated to capture the local geometrical
relationship and enhance the discrimination of the dictionary
and the sparse codes. Using the diagonal constraint matrix
alone, the classification results in the training set can be per-
fect using the learned representations. But the classification
results in the test set is severely constrained by the gap be-
tween the labelled training coding process and the unlabelled
testing coding process. By coupling the two graphs, a com-
mon dictionary is learned, and the difference between sparse
codes with labeled and unlabeled geometrical constraints is
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narrowed as much as possible. As a result, embedding a test
data point into the unlabeled graph can have a discriminative
representation.

2. RELATED WORK

In this section, we review the standard sparse coding and the
related work on locality preserving sparse coding.

Let X = [x1,x2, · · · ,xN ], and xi ∈ Rd represent obser-
vations, where d is the dimension of data points and N is the
number of samples. Let Φ = [ϕ1, ϕ2, · · · , ϕm] be an over-
complete dictionary (m > d), where m is the size of the dic-
tionary and the columns ϕi ∈ Rd are visual words or bases.
Let S = [s1, s2, · · · , sN ] be the coefficients(sparse codes) of
X and si = [s1i, · · · , smi]

T .
The sparse coding algorithm can be formulated as:

< Ŝ, Φ̂ >= argminsi,Φ
∑

i{∥xi −Φsi∥2 + γ∥si∥1},(1)
s.t. ∥ϕj∥2 = 1, ∀j = 1, · · ·m.

Where γ is a regularization parameter to control the tradeoff
between reconstruction and sparseness.

After the dictionary is learned, the sparse code of a new
signal x is calculated

ŝ = argmin
s

∥x−Φs∥2 + γ∥s∥1. (2)

To enhance the smoothness along the manifold, manifold
structure is embedded in the sparse coding process as regu-
larization terms [8, 20, 21, 22]. Locality-constrained sparse
coding was proposed in [20, 22] by embedding the Laplacian
matrix into sparse coding algorithm. The objective function
for locality-constrained sparse coding is as follows:

min
si

∑
i

{∥xi−Φsi∥2+γ∥si∥1}+
α

2

∑
ij

∥si−sj∥2Wij , (3)

where W is the similarity matrix between instances. In [22],
W is defined as:

Wij = { 1 if xj ∈ Nknn{xi} or xi ∈ Nknn{xj};
0 otherwise.

(4)
In [20], W is defined as:

Wij = { sim(xi,xj) if xj ∈ Nknn{xi};
0 if xj /∈ Nknn{xi}.

(5)

Where Nknn{xi} represents k-nearest neighbors of xi, and
sim(xi,xj) denotes the similarity of xi and xj .

In [21], the geometrical structures are encoded in two sit-
uations. When data points distribute on a single manifold, the
topological structures are explicitly modeled by locally linear
embedding algorithm combined with k-nearest neighbors:

xi = Xui, (6)
s.t. uji = 0, if xj /∈ Nknn{xi},∑

j

uji = 1.

here ui = [u1i, u2i, · · · , uNi]
T . When data points lie on

multiple manifolds, sparse representation algorithm com-
bined with k-nearest neighbors is utilized to construct the
topological structures:

min
ui

∑
i

{∥xi −Duknn
i ∥2 + γ∥uknn

i ∥1},

D = [xi1,xi2, · · · ,xin],xij ∈ Nknn.

(7)

After obtaining the local fitting relationship represented
by U = [u1, · · · ,uN ] ,the topological structures are then em-
bedded into sparse coding algorithm as regularization terms
to formulate the corresponding objective functions of dictio-
nary learning.

min
S,Φ

∥X−ΦS∥2F + γ∥S∥1 + αtr{SGST }, (8)

where G = (IN − U)(IN − U)
T , and IN is the N × N

identity matrix.
In all these approaches proposed in [8, 20, 21, 22], the

label information was not utilized.

3. SPARSE CODING FOR TRAINING SET

Let X = [X1,X2, · · · ,XC ] and C be the number of cate-
gories, where Xc = [xc

1, · · · ,xc
Nc

] includes all Nc training
samples from the cth category. We construct a labeled graph
and an unlabeled graph. In the labeled graph, each training
sample xc

i is connected with its neighbors xc
j ∈ Nknn{xc

i}.
We model the local geometrical structure using the locally
linear embedding (LLE).

xc
i = Xcuc

i , (9)
s.t. uc

ji = 0, if xc
j /∈ Nknn{xc

i},∑
j

uc
ji = 1.

where uc
i = [uc

1i, · · · , uc
Nci

]T . Note that xi is excluded from
Nknn{xc

i}. Let U c = [uc
1, · · · ,uc

Nc
], that is,

Xc = XcU c, (10)

then we have
X = XU. (11)

The similarity matrix of the labeled graph can be defined as
W∗ = max{|U| ,

∣∣UT
∣∣}, where |U| denotes the matrix com-

posed of absolute value of elements in U. We can see the
geometric structure of the labeled graph is represented by a
block diagonal matrix

W∗ =


W1

W2

WC

 . (12)

2205



In the unlabeled graph, each training data xi is connected
with its neighbors xj ∈ X. We model the local geometri-
cal structure using the locally linear embedding as in (6). Let
U = [u1,u2, · · · ,uN ], the similarity matrix can be defined
as W = max{|U| ,

∣∣UT
∣∣}. Here W is not block diagonal.

For a training sample xi, let s∗i and si be the codes learned
with labeled and unlabeled graph constraints respectively.

min
s∗i ,Φ

∑
i

{∥xi −Φs∗i ∥2 + γ∥s∗i ∥1}+
α

2

∑
ij

∥s∗i − s∗j∥2W ∗
ji,

(13)

min
si,Φ

∑
i

{∥xi −Φsi∥2 + γ∥si∥1}+
β

2

∑
ij

∥si − sj∥2Wji.

(14)
To make the difference of the sparse codes with labeled and
unlabeled graph constraints as small as possible, sparse cod-
ing for the training set can be formulated as

min
s∗i ,Φ

∑
i

{∥xi −Φs∗i ∥2 + γ∥s∗i ∥1}

+
α1

2

∑
i ̸=j

∥s∗i − s∗j∥2W ∗
ji +

α2

2

∑
i ̸=j

∥s∗i − sj∥2Wji,
(15)

min
si,Φ

∑
i

{∥xi −Φsi∥2 + γ∥si∥1}

+
β1

2

∑
i ̸=j

∥si − sj∥2Wji +
β2

2

∑
i ̸=j

∥si − s∗j∥2Wji.
(16)

Since W∗ is a diagonal matrix, s∗i calculated by (13) is
more discriminative than si obtained by (14). Our aim is to
incorporate the label information and narrow the gap between
labelled and unlabelled coding process at the same time, so
we simply set α1 equal to β2 , β1 equal to α2 and let the
former larger than the latter.

In practice we optimize (15) and (16) alternately. Let X̃ =
[X,X], S̃ = [S∗,S], and

W̃ =

(
αW∗ αW
βW βW

)
. (17)

Calculating S∗, S in sequential order according to their posi-
tions in S̃, the combined objective function of (15) and (16)
can be written as follows

min
S̃

∥X̃−ΦS̃∥2 + γ∥S̃∥1 + tr(S̃G̃S̃T ), (18)

where G̃ is a Laplacian matrix G̃ = D̃ − W̃, and D̃ is a
diagonal function Dii =

∑
j W̃ji.

Φ and S̃ can be calculated by solving (18) using feature
sign algorithm as [22]. Then a classifier can be trained using
labels and S.

4. SPARSE CODING FOR TESTING SET

For a test sample xt, we do not know its label. Therefore
we embed it into only the unsupervised graph. Represent xt

using its nearest neighbors in the training set:

xt = Xut, (19)
s.t. ujt = 0, if xj /∈ Nknn{xt},∑

j

ujt = 1.

Let X̃t = [X,Xt}, S̃t = [S∗,St], here Xt = [X,xt], St =

[S, st], and the similarity matrix W̃t can be defined as

W̃t =

 αW∗ αW α|ut|
βW βW β|ut|
β|uT

t | β|uT
t | 0

 . (20)

Then S̃t is obtained by solving

min
S̃t

∥X̃t −ΦS̃t∥2 + γ∥S̃t∥1 + tr(S̃tG̃tS̃
T
t ). (21)

In fact, we only need to solve st with the learned S̃ fixed. The
class label of xt can be predicted using the trained classifier.

5. EXPERIMENTS

In this section, we tested the proposed model with different
recognition tasks, including textures, handwritten digits and
faces. The sparse codes were fed to Linear SVM for classifi-
cation. We used libsvm implementation [23] for SVM.

5.1. Texture classification

Two texture images from the Brodatz dataset were used to
build two classes as in [6] and the patch size was 12× 12.We
randomly selected patches from left and right half of each
texture for training and testing set respectively, so that there
was no overlap between the training and test sets. We used
γ = 0.1, α = 1, and β = 0.1. The dictionary size was 64. We
compared the classification performance of our method with
the unsupervised and supervised dictionary learning methods
in [6] and Graph sparse coding in [22]. The results of un-
supervised and supervised dictionary learning methods were
from [6] because we did not implement their methods. It
should be noted that we downsampled the two texture im-
ages before extracting patches for Graph sparse coding and
experiments. We ran 20 times for each training set size. The
results for training sets of various size N were shown in Ta-
ble 1. For all training sets, our results were significantly better
than unsupervised dictionary learning (REC), generative su-
pervised dictionary learning (SDL G) and discriminative dic-
tionary learning (SDL D). Compared with GraphSC in [22],
our results were also better for all training sets.
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Table 1. Error rates for the texture classification task using various methods and sizes N of the training set.
Training REC(L1) [6] SDL G[6] SDL D[6] GraphSC [22] Ours

300 48.84 47.34 44.84 20.96 18.28
1500 46.8 46.3 42.0 16.70 14.61
3000 45.17 45.1 40.6 16.23 13.80
6000 45.71 43.68 39.77 15.54 13.43
15000 47.54 46.15 38.99 15.29 13.70
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Fig. 1. Codes under different methods

Now we explain why the proposed approach performed
better. We compared the sparse codes of a training sample
with different geometrical constraints. In the left of Fig.1, we
showed the sparse codes learned with a labeled geometrical
constraint using (13) (denoted by circle) and with a unlabeled
geometrical constraint using (14) (denoted by plus sign) sepa-
rately. The difference between codes can be seen. In the right
of Fig.1, we showed the sparse codes learned with coupled
graphs using (15) (denoted by circle) and using (16) (denoted
by plus sign). It can be seen that s∗ and s were almost over-
lapped, and our proposed method narrowed the gap between
supervised and unsupervised sparse coding process. There-
fore, by embedding the test sample into the unlabeled graph,
the discrimination of the labeled graph can be achieved.

5.2. Face Recognition

The Extended Yale B database consists of 2,414 near frontal
face images from 38 individuals. We randomly selected 20
images for training and used the rest for testing. Images were
resized to 32 × 32 and these original images were used as
input. Our settings for GSC and proposal method were dif-
ferent from [13], where images were resized to 54 × 48 and
Eigenface was used. But we also listed their result here as a
comparison. The parameters we used here were γ = 0.001,
α = 0.1, and β = 0.001. As showed in Table 2, our method
achieved the best performance.

Table 2. The recognition rates for Extended Yale B for dif-
ferent approaches

Approaches FDDL[13] GSC[22] Ours
Recognition rates 0.919 0.917 0.934

Table 3. Error rate for USPS for different approaches
Approaches UDL [4] SDL [4] GSC [22] Ours
Error rate 4.58 2.84 5.0 1.95

5.3. USPS dataset

The USPS dataset has 7291 training images and 2007 test
images of size 16 × 16. We used regularization parameters
γ = 0.1, α = 0.1, and β = 0.01. The dictionary size is 512.

We compared our results with graph sparse coding (GSC)
in [22], Mairal et al.’s unsupervised(UDL) and supervised dic-
tionary learning(SDL) in [4]. The best results of these ap-
proaches were shown in Table 3. The error rate of our ap-
proach was 1.95%, which was lower than all other approaches
compared.

6. CONCLUSIONS

In this article we propose a supervised sparse coding frame-
work. The label information and the geometrical structure
are simultaneously incorporated to the sparse coding method
through a block diagonal similarity matrix. Through the com-
mon learned dictionary, which is stable for labeled and unla-
beled geometrical constraints, the discrimination of the dic-
tionary and the sparse codes is improved. Experimental re-
sults on different classification problems illustrated the effec-
tiveness of our proposal method.
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