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ABSTRACT

We introduce a probabilistic approach to the LMS filter.

By means of an efficient approximation, this approach pro-

vides an adaptable step-size LMS algorithm together with a

measure of uncertainty about the estimation. In addition, the

proposed approximation preserves the linear complexity of

the standard LMS. Numerical results show the improved per-

formance of the algorithm with respect to standard LMS and

state-of-the-art algorithms with similar complexity. The goal

of this work, therefore, is to open the door to bring some more

Bayesian machine learning techniques to adaptive filtering.

Index Terms— probabilistic models, least-mean-squares,

adaptive filtering, state-space models

1. INTRODUCTION

Probabilistic models have proven to be very useful in a lot

of applications in signal processing where signal estimation

is needed [1, 2, 3]. Some of their advantages are that 1) they

force the designer to specify all the assumptions of the model,

2) they provide a clear separation between the model and the

algorithm used to solve it, and 3) they usually provide some

measure of uncertainty about the estimation.

On the other hand, adaptive filtering is a standard ap-

proach in estimation problems when the input is received

as a stream of data that is potentially non-stationary. This

approach is widely understood and applied to several prob-

lems such as echo cancellation [4], noise cancellation [5], and

channel equalization [6].

Although these two approaches share some underlying re-

lations, there are very few connections in the literature. The

first important attempt in the signal processing community to

relate these two fields was the connection between a linear
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Gaussian state-space model (i.e. Kalman filter) and the RLS

filter, by Sayed and Kailath [7] and then by Haykin et al. [8].

The RLS adaptive filtering algorithm emerges naturally when

one defines a particular state-space model (SSM) and then

performs exact inference in that model. This approach was

later exploited in [9] to design a kernel RLS algorithm based

on Gaussian processes.

A first attempt to approximate the LMS filter from a

probabilistic perspective was presented in [10], focusing on

a kernel-based implementation. The algorithm of [10] makes

use of a Maximum a Posteriori (MAP) estimate as an approx-

imation for the predictive step. However, this approximation

does not preserve the estimate of the uncertainty in each step,

therefore degrading the performance of the algorithm.

In this work, we provide a similar connection between

state-space models and least-mean-squares (LMS). Our ap-

proach is based on approximating the posterior distribution

with an isotropic Gaussian distribution. We show how the

computation of this approximated posterior leads to a linear-

complexity algorithm, comparable to the standard LMS. Sim-

ilar approaches have already been developed for a variety of

problems such as channel equalization using recurrent RBF

neural networks [11], or Bayesian forecasting [12]. Here, we

show the usefulness of this probabilistic approach for adap-

tive filtering.

The probabilistic perspective we adopt throughout this

work presents two main advantages. Firstly, a novel LMS

algorithm with adaptable step size emerges naturally with

this approach, making it suitable for both stationary and non-

stationary environments. The proposed algorithm has less

free parameters than previous LMS algorithms with variable

step size [13, 14, 15], and its parameters are easier to be tuned

w.r.t. these algorithms and standard LMS. Secondly, the use

of a probabilistic model provides us with an estimate of the

error variance, which is useful in many applications.

Experiments with simulated and real data show the ad-

vantages of the presented approach with respect to previous

works. However, we remark that the main contribution of this

paper is that it opens the door to introduce more Bayesian

machine learning techniques, such as variational inference

and Monte Carlo sampling methods [16], to adaptive filtering.
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2. PROBABILISTIC MODEL

Throughout this work, we assume the observation model to

be linear-Gaussian with the following distribution,

p(yk|wk) = N (yk;x
T
kwk, σ

2
n), (1)

where σ2
n is the variance of the observation noise, xk is the

regression vector and wk is the parameter vector to be se-

quentially estimated, both M -dimensional column vectors.

In a non-stationary scenario, wk follows a dynamic pro-

cess. In particular, we consider a diffusion process (random-

walk model) with variance σ2
d for this parameter vector:

p(wk|wk−1) = N (wk;wk−1, σ
2
dI), (2)

where I denotes the identity matrix. In order to initiate the

recursion, we assume the following prior distribution on wk

p(w0) = N (w0; 0, σ
2
dI).

3. EXACT INFERENCE IN THIS MODEL:

REVISITING THE RLS FILTER

Given the described probabilistic SSM, we would like to infer

the posterior probability distribution p(wk|y1:k). Since all

involved distributions are Gaussian, one can perform exact

inference, leveraging the probability rules in a straightforward

manner. The resulting probability distribution is

p(wk|y1:k) = N (wk;µk,Σk),

in which the mean vector µk is given by

µk = µk−1 +Kk(yk − x
T
k µk−1)xk,

where we have introduced the auxiliary variable

Kk =

(

Σk−1 + σ2
dI
)

x
T
k (Σk−1 + σ2

dI)xk + σ2
n

,

and the covariance matrix Σk is obtained as

Σk =
(

I−Kkxkx
T
k

)

(Σk−1 + σ2
d),

Note that the mode of p(wk|y1:k), i.e. the maximum-a-

posteriori estimate (MAP), coincides with the RLS adaptive

rule

w
(RLS)
k = w

(RLS)
k−1 +Kk(yk − x

T
k w

(RLS)
k−1 )xk. (3)

This rule is similar to the one introduced in [8].

Finally, note that the covariance matrix Σk is a measure

of the uncertainty of the estimate wk conditioned on the ob-

served data y1:k. Nevertheless, for many applications a single

scalar summarizing the variance of the estimate could prove

to be sufficiently useful. In the next section, we show how

such a scalar is obtained naturally when p(wk|y1:k) is approx-

imated with an isotropic Gaussian distribution. We also show

that this approximation leads to an LMS-like estimation.

4. APPROXIMATING THE POSTERIOR

DISTRIBUTION: LMS FILTER

The proposed approach consists in approximating the poste-

rior distribution p(wk|y1:k), in general a multivariate Gaus-

sian distribution with a full covariance matrix, by an isotropic

spherical Gaussian distribution

p̂(wk|y1:k) = N (wk; µ̂k, σ̂
2
kI). (4)

In order to estimate the mean and covariance of the ap-

proximate distribution p̂(wk|y1:k), we propose to select those

that minimize the Kullback-Leibler divergence with respect

to the original distribution, i.e.,

{µ̂k, σ̂k} = arg min
µ̂

k
,σ̂k

{DKL (p(wk|y1:k))‖p̂(wk|y1:k))}.

The derivation of the corresponding minimization prob-

lem can be found in Appendix A. In particular, the optimal

mean and the covariance are found as

µ̂k = µk; σ̂2
k =

Tr{Σk}

M
. (5)

We now show that by using (4) in the recursive pre-

dictive and filtering expressions we obtain an LMS-like

adaptive rule. First, let us assume that we have an approx-

imate posterior distribution at k − 1, p̂(wk−1|y1:k−1) =
N (wk−1; µ̂k−1, σ̂

2
k−1I). Since all involved distributions are

Gaussian, the predictive distribution is obtained as

p̂(wk|y1:k−1) =

∫

p(wk|wk−1)p̂(wk−1|y1:k−1)dwk−1

= N (wk;µk|k−1,Σk|k−1), (6)

where the mean vector and covariance matrix are given by

µ̂k|k−1 = µ̂k−1

Σ̂k|k−1 = (σ̂2
k−1 + σ2

d)I.

From (6), the posterior distribution at time k can be com-

puted using Bayes’ Theorem and standard Gaussian manipu-

lations (see for instance [17, Ch. 4]). Then, we approximate

the posterior p(wk|y1:k) with an isotropic Gaussian,

p̂(wk|y1:k) = N (wk; µ̂k, σ̂
2
kI),

where

µ̂k = µ̂k−1 +
(σ̂2

k−1 + σ2
d)

(σ̂2
k−1 + σ2

d)‖xk‖2 + σ2
n

(yk − x
T
k µ̂k−1)xk

= µ̂k−1 + ηk(yk − x
T
k µ̂k−1)xk. (7)
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Note that, instead of a gain matrix Kk as in Eq. (3), we now

have a scalar gain ηk that operates as a variable step size.

Finally, to obtain the posterior variance, which is our mea-

sure of uncertainty, we apply (5) and the trick Tr{xkx
T
k } =

x
T
k xk = ‖xk‖

2,

σ̂2
k =

Tr(Σk)

M
(8)

=
1

M
Tr

{(

I− ηkxkx
T
k

)

(σ̂2
k−1 + σ2

d)
}

(9)

=

(

1−
ηk‖xk‖2

M

)

(σ̂2
k−1 + σ2

d). (10)

If MAP estimation is performed, we obtain an adaptable step-

size LMS estimation

w
(LMS)
k = w

(LMS)
k−1 + ηk(yk − x

T
k w

(LMS)
k−1 )xk, (11)

with

ηk =
(σ̂2

k−1 + σ2
d)

(σ̂2
k−1 + σ2

d)‖xk‖2 + σ2
n

.

At this point, several interesting remarks can be made:

• The adaptive rule (11) has linear complexity since it

does not require us to compute the full matrix Σk.

• For a stationary model, we have σ2
d = 0 in (7) and (10).

In this case, the algorithm remains valid and both the

step size and the error variance, σ̂k, vanish over time k.

• Finally, the proposed adaptable step-size LMS has only

two parameters, σ2
d and σ2

n, (and only one, σ2
n, in sta-

tionary scenarios) in contrast to other variable step-size

algorithms [13, 14, 15]. More interestingly, both σ2
d

and σ2
n have a clear underlying physical meaning, and

they can be estimated in many cases. We will comment

more about this in the next section.

5. EXPERIMENTS

We evaluate the performance of the proposed algorithm in

both stationary and tracking experiments. In the first experi-

ment, we estimate a fixed vector wo of dimension M = 50.

The entries of the vector are independently and uniformly

chosen in the range [−1, 1]. Then, the vector is normalized

so that ‖wo‖ = 1. Regressors xk are zero-mean Gaussian

vectors with identity covariance matrix. The additive noise

variance is such that the SNR is 20 dB. We compare our al-

gorithm with standard RLS and three other LMS-based algo-

rithms: LMS, NLMS [18], VSS-LMS [15].1 The probabilis-

tic LMS algorithm in [10] is not simulated because it is not

suitable for stationary environments.

1The used parameters for each algorithm are: for RLS λ = 1, ǫ−1
=

0.01; for LMS µ = 0.01; for NLMS µ = 0.5; and for VSS-LMS µmax =

1, α = 0.95, C = 1e− 4.

In stationary environments, the proposed algorithm has

only one parameter, σ2
n. We simulate both the scenario where

we have perfectly knowledge of the amount of noise (prob-

LMS1) and the case where the value σ2
n is 100 times smaller

than the actual value (probLMS2). The Mean-Square Devia-

tion (MSD = E‖w0 −wk‖2), averaged out over 50 indepen-

dent simulations, is presented in Fig. 1.
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Fig. 1. Performance in terms of MSD of probabilistic LMS

with both optimal (probLMS1) and suboptimal (probLMS2)

compared to LMS, NLMS, VS-LMS, and RLS.

The performance of probabilistic LMS is close to RLS

(obviously at a much lower computational cost) and largely

outperforms previous variable step-size LMS algorithms pro-

posed in the literature. Note that, when the model is station-

ary, i.e. σ2
d = 0 in (2), both the uncertainty σ̂2

k , and the adap-

tive step size ηk, vanish over time. This implies that the error

tends to zero when k goes to infinity. Fig. 1 also shows that

the proposed approach is not very sensitive to a bad choice

of its only parameter, as demonstrated by the good results of

probLMS2, which uses a σ2
n that is 100 times smaller than the

optimal value.
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Fig. 2. Real part of one coefficient of the measured and esti-

mated channel in experiment two. The shaded area represents

two standard deviations from the prediction (the mean of the

posterior distribution).
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Method LMS NLMS LMS-2013 VSSNLMS probLMS RLS

MSD (dB) -28.45 -21.07 -14.36 -26.90 -28.36 -25.97

Table 1. Steady-state MSD of the different algorithms for the

tracking of a real MISO channel.

In a second experiment, we test the tracking capabilities

of the proposed algorithm with real data of a wireless MISO

channel acquired in a realistic indoor scenario. More details

on the setup can be found in [19]. Fig. 2 shows the real part

of one of the channels, and the estimate of the proposed algo-

rithm. The shaded area represents the estimated uncertainty

for each prediction, i.e. µ̂k ± 2σ̂k. Since the experimental

setup does not allow us to obtain the optimal values for the pa-

rameters, we fix these parameters to their values that optimize

the steady-state mean square deviation (MSD). Table 1 shows

this steady-state MSD of the estimate of the MISO channel

with different methods. As can be seen, the best tracking

performance is obtained by standard LMS and the proposed

method.

6. CONCLUSIONS AND OPENED EXTENSIONS

We have presented a probabilistic interpretation of the least-

mean-square filter. The resulting algorithm is an adaptable

step-size LMS that performs well both in stationary and track-

ing scenarios. Moreover, it has fewer free parameters than

previous approaches and these parameters have a clear physi-

cal meaning. Finally, as stated in the introduction, one of the

advantages of having a probabilistic model is that it is easily

extensible:

• If, instead of using an isotropic Gaussian distribution in

the approximation, we used a Gaussian with diagonal

covariance matrix, we would obtain a similar algorithm

with different step sizes and measures of uncertainty,

for each component of wk. Although this model can be

more descriptive, it needs more parameters to be tuned,

and the parallelism with LMS vanishes.

• Similarly, if we substitute the transition model of (2) by

an Ornstein-Uhlenbeck process,

p(wk|wk−1) = N (wk;λwk−1, σ
2
d),

a similar algorithm is obtained but with a forgetting fac-

tor λ multiplying w
(LMS)
k−1 in (11). This algorithm may

have improved performance under such a kind of au-

toregresive dynamics of wk, though, again, the connec-

tion with standard LMS becomes dimmer.

• As in [10], the measurement model (1) can be changed

to obtain similar adaptive algorithms for classification,

ordinal regression, and Dirichlet regression for compo-

sitional data.

• A similar approximation technique could be applied

to more complex dynamical models, i.e. switching

dynamical models [20]. The derivation of efficient

adaptive algorithms that explicitly take into account a

switch in the dynamics of the parameters of interest is

a non-trivial and open problem, though the proposed

approach could be useful.

• Finally, like standard LMS, this algorithm can be ker-

nelized for its application in estimation under non-

linear scenarios.

A. KL DIVERGENCE BETWEEN A GENERAL

GAUSSIAN DISTRIBUTION AND AN ISOTROPIC

GAUSSIAN

We want to approximate px1
(x) = N (x;µ1,Σ1) by px2

(x) =
N (x;µ2, σ

2
2I). In order to do so, we have to compute the

parameters of px2
(x), µ2 and σ2

2 , that minimize the following

Kullback-Leibler divergence,

DKL(px1
‖px2

) =

∫ ∞

−∞

px1
(x) ln

px1
(x)

px2
(x)

dx

=
1

2
{−M + Tr(σ−2

2 I ·Σ−1
1 )

+(µ2 − µ1)
Tσ−2

2 I(µ2 − µ1)

+ ln
σ2
2
M

detΣ1
}. (12)

Using symmetry arguments, we obtain

µ
∗
2 = argmin

µ
2

{DKL(px1
‖px2

)} = µ1. (13)

Then, (12) gets simplified into

DKL(px1
‖px2

) =
1

2
{−M + Tr(

Σ1

σ2
2

) + ln
σ2M
2

detΣ1
}. (14)

The variance σ2
2 is computed in order to minimize this

Kullback-Leibler divergence as

σ2∗
2 = argmin

σ2

2

DKL(Px1
‖Px2

)

= argmin
σ2

2

{σ−2
2 Tr{Σ1}+M lnσ2

2}. (15)

Deriving and making it equal zero leads to

∂

∂σ2
2

[

Tr{Σ1}

σ2
2

+M lnσ2
2

]

=
M

σ2
2

−
Tr{Σ1}

(σ2
2)

2

∣

∣

∣

∣

σ2

2
=σ2∗

2

= 0 .

Finally, since the divergence has a single extremum in R+,

σ2∗
2 =

Tr{Σ1}

M
. (16)
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