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ABSTRACT

Variation of patterns in signal can be represented by the covariance
structure of vectors or its eigensubspace. When information of the
pattern variation is available, representation by the covariance matrix
or the eigensubspace is useful for feature extraction and classifica-
tion compared with standard vector or matrix representations.

The structure and metric of the Grassmann manifold (Grassman-
nian) which is a set of eigensubspace, have been researched widely.
Especially, the author has developed Mahalanobis distance in the
Grassmannian, and it shows higher representation ability and classi-
fication accuracy compared with conventional Grassmannian repre-
sentation methods.

In this paper, we extend Grassmannian metrics including the
Mahalanobis distance using the kernel trick. We also propose an
efficient basis vector selection algorithm and combine with the
subset approximation of kernel principal component analysis to
reduce the computational cost. In our experimental simulation by 3-
dimensional object recognition problem, the proposed Mahalanobis
distance shows better performance than conventional methods.

Index Terms— Subspace distance, Grassmann manifold, kernel
trick, kernel principal component analysis, Mahalanobis distance

1. INTRODUCTION

In most of classical machine learning based signal processing meth-
ods, patterns are represented by vectors or matrices. Classical pat-
tern analysis methods investigate the structure and metric of the ma-
trices or a set of the vectors using the first and the second order statis-
tics, such as covariance and eigensubspace. In this paper, we con-
sider the case that each pattern is represented by its eigensubspace,
and investigate the structure of the set of eigensubspaces which is
called the Grassmann manifold.

For example, in face recognition problems, variations of angle,
illumination, and facial expression will influence the pattern vec-
tor. The Grassmannian representation has been used to express such
variations [1, 2]. Moreover, the Grassmann representation has been
applied to handwritten character recognition, 3-D object recognition,
and EEG classification problems [3, 4, 5].

A set of r-dimensional subspaces in d-dimensional input space is
denoted by G(r, d). An element of G(r, d) is an r-dimensional sub-
space that has one-to-one correspondence with its orthogonal pro-
jection matrix P . Thus we equate the subspace and its orthogonal
projection matrix, P ∈ G(r, d).

The structure and the distance metric of G(r, d) have been re-
searched widely. Yamaguchi et al. proposed the mutual subspace
method (MSM) [6]. The distance of MSM is defined as the min-
imum angle between two subspaces. The kernel version of MSM

also has been proposed [7]. Hamm and Lee have proposed Grass-
mann discriminant analysis (GDA) which is a Grassmannian version
of the linear discriminant analysis [8, 4]. GDA is also extended by
using the kernel trick [1, 2]. The author proposed the Mahalanobis
distance in Grassmannian [3, 5].

In this paper, we systematize the metrics in kernel Grassman-
nian, and propose the Mahalanobis distance in the reproducing ker-
nel Hilbert space (RKHS). Unlike the standard extensions by kernel
trick, since the metric operator of the Mahalanobis distance has to
be expressed by basis vectors, its computational cost is not realistic
if we simply use all available training vectors as the basis vectors.
Therefore, we also propose an efficient basis selection algorithm. We
compare the proposed method with several conventional methods by
3-D object classification problems. The proposed Mahalanobis dis-
tance showed the best classification performance.

2. GRASSMANNIAN REPRESENTATION

Let us consider a d-dimensional variational vector pattern x0(t),
where t = [t1, . . . , tr]

⊤ denotes the variation factor such as the
camera angle and illumination. Since it is difficult to directly deal
with the function x0(t), we approximate by using only the first or-
der derivation,

x0(t) ≃x̃0(t) = x0(0) +

r∑
i=1

ti

(
∂x0(t)

∂ti

)∣∣∣∣
t=0

. (1)

Let the Jacobian of x0(t) be Jx0 ∈ Rd×r; [Jx0 ]ij =
∂[x0(t)]i

∂tj
. Then

the pattern structure is represented by the linear manifold,

X ={x|x = x̃0(0) + Jx0 |t=0t, t ∈ Rr}. (2)

Alternatively, the minimum subspace that contains the linear mani-
fold is considered, X ′ = {x|x = αx̃0(0) + Jx0 |t=0t, α ∈ R, t ∈
Rr}. If X contains the origin, X = X ′, and if the input dimension d
is sufficiently high, X and X ′ do not make a big difference.

The tangent distance method that has been proposed for charac-
ter recognition problems employs the linear manifold representation,
X [9]. On the other hand, Grassmann methods employ the subspace
representation X ′.

In practical problems, the subspace X ′ is often obtained as the
eigensubspace of a sequence of vectors x1, . . . ,xn such as moving
image, continues shooting, and a camera array. Alternatively, the
sequence can be generated from a priori knowledge of the variation.
For example, in character recognition problems, we can artificially
generate modified samples such as resizing, horizontal/vertical shift,
rotation and so forth.
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3. EXISTING METRICS ON GRASSMANNIAN

As we noted, a subspace X has one-to-one correspondence to the
projection matrix onto the subspace, and thus we equate them. We
introduce several existing distance measurements between two sub-
spaces P1,P2 ∈ G(r, d).

3.1. Deterministic metrics

The projection metric DP (P1,P2) is simply defined by

DP(P1,P2) =∥P1 − P2∥F , (3)

where ∥ · ∥F denotes the Frobenius norm.
Let U1,U2 ∈ Rd×r be matrices of the arbitrary orthonormal

base of P1 and P2 respectively. Then Binet-Cauchy metric DBC is
defined by

DBC(P1,P2) =1− det(U⊤
1 U2). (4)

Let σ1 and σr be the maximum and minimum singular value of
U⊤

1 U2 respectively. Then the minimum and maximum angles be-
tween P1 and P2 are respectively θ1 = cos−1 σ1 and θr = cos−1 σr.
The maximum and minimum correlations are defined by

Dmax(P1,P2) = sin(θ1) (5)
Dmin(P1,P2) = sin(θr). (6)

It should be noted that Dmax(P1,P2) does not satisfy the axiom of
distances, i.e., Dmax(P1,P2) = 0 does not imply P1 = P2.

The metric of MSM is defined by the minimum angle θ1 [6].
Since the sine function is monotonically increasing in [−π/2, π/2],
the maximum correlation and MSM are equivalent under the k-
nearest neighbor rule.

These Grassmannian metrics are also defined by using principal
angles [8]. GDA defines two kernels KP(P1,P2) = ∥U⊤

1 U2∥2F and
KBC(P1,P2) = (det(U⊤

1 U2))
2, and applies kernel LDA [8].

3.2. Mahalanobis distance on Grassmannian

In Euclidean space, the distance between x1 and x2 under the pos-
itive definite metric matrix M is defined by dM (x1,x2) = (x1 −
x2)

⊤M(x1 − x2). Let the covariance matrix of x be Σ = E[(x−
x̄)(x− x̄)⊤], where E[·] is the ensemble mean, and x̄ = E[x]. The
metric matrix of the Mahalanobis distance is defined by M = Σ−1.
This can be characterized by maximizing the following likelihood
function,

L(M |x1, . . . ,xn) =
n∏

i=1

1√
det(M−1)

exp

(
−1

2
d2M (xi, x̄)

)
.

(7)

L is maximized by M = Σ−1 when n → ∞.
In Grassmannian, the mean subspace of P1, . . . ,PN under the

projection metric is defined by [3]

P̄ =argmin
P∈G(r,d)

1

N

N∑
i=1

D2
P(P ,Pi). (8)

The mean subspace P̄ is given by the projection matrix onto the
space spanned by r-major eigenvectors of

∑N
i=1 Pi.

By introducing a positive definite metric matrix M ∈ Rd×d, the
projection metric is extended to

DM (P1,P2) =Tr[(P1 − P2)M(P1 − P2)
⊤]. (9)

If M is the identity matrix I , DM (P1,P2) is equivalent to the pro-
jection metric. In a similar manner to Eq. (7), we define the metric
matrix by maximizing

L(M |P1, . . . ,PN ) =
N∏
i=1

1√
det(M−1)

exp

(
−1

2
D2

M (Pi, P̄ )

)
.

(10)

The solution is given by [3]

M =

(
1

N

N∑
i=1

(Pi − P̄ )(Pi − P̄ )⊤
)−1

. (11)

In practice, we add a regularization term λI before the inverse oper-
ation, where λ ≥ 0 is the regularization parameter.

4. KERNEL EXTENSION OF GRASSMANNIAN METRICS

Several kernel extensions of Grassmannian metrics have been pro-
posed based on kernel principal component analysis (KPCA) [1, 2,
7].

4.1. Kernel PCA and its subset approximation

In kernel trick, pattern vectors x1, . . . ,xn are nonlinearly mapped
to RKHS by ϕ(·) which is derived by a positive definite kernel func-
tion, k(x1,x2) = ⟨ϕ(x1), ϕ(x2)⟩, ∀x1,x2 ∈ Rd, where ⟨·, ·, ⟩ is
the inner product [10]. PCA obtains an orthonormal system U ∈
Rd×r that maximizes the variance, max

U |U⊤U=I

1
n

∑n
i=1 ∥U⊤xi∥2 =

U⊤RU , where R = 1
n

∑n
i=1 xix

⊤
i is the correlation matrix of xi.

In a similar way, KPCA obtains U by using mapped samples,

max
U |U∗U=I

1

n

n∑
i=1

∥U∗ϕ(xi)∥2, (12)

where ·∗ denotes the adjoint operator that corresponds to the trans-
pose in real finite vector space. Since ϕ(xi) could be an element of
an infinite dimensional Hilbert space, we use the adjoint symbol and
non-bold symbols. Let an operator,

Φ = [ϕ(x1), . . . , ϕ(xn)]. (13)

Then since U is a bounded linear operator from the subspace
spanned by ϕ(x1), . . . , ϕ(xn) to Rr, U can be parameterized
as U = ΦA, where A ∈ Rn×r. The problem is reduced to

max
A|A⊤KA=I

Tr[A⊤KKA], where K = Φ∗Φ is the kernel Gram

matrix ([K]i,j = k(xi,xj)). Suppose {λi,vi} be the ith largest
eigenvalue and corresponding eigenvectors of K, and
V = [v1, . . . ,vr] ∈ Rn×r, Λ = diag(λ1, . . . , λr). A is given by
A = V Λ−1/2. For an input vector x, the transform is U∗ϕ(x) =
A⊤kx, where kx = [k(x1,x), . . . , k(xn,x)]

⊤.
KPCA is obtained by the eigenvalue decomposition (EVD) of

the n× n matrix K, and for an input vector, the transformed vector
is obtained from n times evaluations of the kernel function. When
n is large, these computational costs are high. When we extend
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the Mahalanobis metric using the kernel trick, the projection ma-
trix (operator) has to be expressed by the mapped basis vectors,
ϕ(x1), . . . , ϕ(xn). In our framework, we deal with a number of
patterns, and each pattern is expressed by n vectors. Therefore, if
we use all available vectors, the computational complexity will be
distant. In order to reduce the computational complexity of KPCA,
we introduce the subset approximation (SubKPCA) [11].

SubKPCA uses the same objective function Eq. (12), but differ-
ent base, that is U is parameterized U = ΨB, B ∈ Rm×r, where
Ψ = [ϕ(z1), . . . , ϕ(zm)]. z1, . . . ,zm are called the basis vectors,
and we here suppose they are given. Then the problem is

max
B|B⊤KzB=I

Tr[B⊤K⊤
xzKxzB], (14)

where Kz = Ψ∗Ψ, ([Kz]i,j = k(zi, zj)), and Kxz = Φ∗Ψ,
([Kxz]i,j = k(xi, zj)). B is obtained as r-major eigenvectors of
the generalized eigenvalue problem K⊤

xzKxzb = λKzb. In this
case, the size of generalized EVD is m, and for an input vector, m
times kernel evaluation is required. If m = n and xi = zi for
i = 1, . . . , n, SubKPCA is equivalent to KPCA, and m controls
a trade-off between the approximation error and the computational
complexity.

The selection of the basis vectors z1, . . . , zm is an impor-
tant issue. However, in [11], simple sample selection methods
such as random sampling consensus (RANSAC), clustering or for-
ward/backward search were used to determine the basis vectors. We
here propose an efficient sample selection based on the approxima-
tion error minimization in Section 5.1.

4.2. Deterministic metrics

For the ith pattern, we let an operator Φi and a matrix Ai as
well as noted in Section 4.1. Then the projection operator onto
r-dimensional subspace in RKHS is given by Pi = ΦiAiA

⊤
i Φ

∗
i .

The projection metric and Binet-Cauchy metric in RKHS is
given by

D̂P(P1, P2)
2 =∥P1 − P2∥2F = 2r − 2∥A⊤

1 K12A2∥2F , (15)

D̂BC(P1, P2)
2 =1− det(U∗

1U2) = 1− det(A⊤
1 K12A2) (16)

where K12 = Φ∗
1Φ2. The maximum and minimum correlations

are also obtained by the maximum and minimum singular value
of A⊤

1 K12A2 in a similar way. The kernel MSM was also pro-
posed [7], and it is also equivalent to the kernel maximum corre-
lation under the k-nearest rule. Kernel GDA uses the similar two
kernels defined by the kernel Grassmann metrics, K̂P(P1, P2) =
∥U∗

1U2∥2F = ∥A⊤
1 K12A2∥2F and K̂BC(P1, P2) = det(U∗

1U2)
2 =

det(A⊤
1 K12A2)

2.

5. PROPOSED METHOD

5.1. Basis selection method

Suppose that x1, . . . ,xn are all training vectors, z1, . . . , zm are ba-
sis vectors to be obtained, and Ψ = [ϕ(z1), . . . , ϕ(zm)]. The ideal
criterion to obtain the basis vectors is maximizing Eq. (12), where
U = ΨB. However, it is difficult to optimize since the matrix B
depends on Ψ. We thus i) iteratively obtain zt for t = 1, . . . ,m; ii)
assume {zt}mt=1 is the subset of all training vectors; and iii) approxi-
mate the criterion Eq. (12) by the full-rank case, i.e., projection onto

Algorithm 1 Basis selection algorithm
Require: Training vectors: x1, . . . ,xn, no. of basis vectors m, ker-

nel function: k(·, ·)
Ensure: Basis vectors: z1, . . . , zm

1: Select the first basis vector z1
2: for i = 1 to n do
3: obtain initial lt(xi) = k(z1,xi)
4: end for
5: for t = 2 to m do
6: obtain k = argmini∥lt−1(xi)∥2, and set zt = xk.
7: Update lt(xi) by Eq. (18) for all i
8: end for

the space spanned by current mapped basis vectors, In this case, we
seek a vector whose projection norm onto the space is minimum,

zt = argmin
z∈{xi}n

i=1

∥PΨt−1ϕ(z)∥2

∥ϕ(z)∥2
= argmin

z∈{xi}n
i=1

k(z)⊤(KΨ
t−1)

−1k(z)

k(z,z)
,

(17)

where PΨt−1 = Ψt−1(Ψ
∗
t−1Ψt−1)

−1Ψ∗
t−1 is the projection oper-

ator onto the subspace spanned by ϕ(z1), . . . , ϕ(zt−1), KΨ
t−1 =

Ψ∗
t−1Ψt−1, and k(z) = Ψ∗

t−1ϕ(z).
This process can be efficiently obtained by using updating of the

Cholesky decomposition. Let Lt−1 be the Cholesky decomposition
of KΨ

t−1 (KΨ
t−1 = Lt−1L

⊤
t−1), and suppose we have lt−1(xi) =

L−1
t−1k(xi) for all i. Then the numerator of Eq. (17) is ∥lt−1(xi)∥2,

and for obtained zt, lt−1(xi) can be updated by

lt(xi) =

[
lt−1(xi)

1√
k(zt,zt)−∥lt−1(zt)∥2

(k(zt, zt)− (lt−1(zt))
⊤lt−1(xi))

]
.

(18)

We summarize the basis selection algorithm in Algorithm 1.

5.2. Mahalanobis distance on kernel Grassmannian

We then obtain the mean subspace, that is defined by the projection
operator onto the mean subspace. In a similar way to the case of the
finite dimensional space, the projection operator is obtained from
EVD of

∑N
i=1 Pi. We here use the SubKPCA, and each projection

operator is given by Pi = ΨBiB
⊤
i Ψ∗, where Ψ is common for all

i, and obtained from the proposed basis selection algorithm. Let Lw

is an arbitrary matrix that satisfies
∑N

i=1 BiB
⊤
i = LwL

⊤
w . Then

eigenvectors of
∑N

i=1 Pi is obtained from EVD of L⊤
wKzLw. Let

(λi,vi) be the ith largest eigenvalue and corresponding eigenvector,
and V = [v1, . . . ,vr]diag(1/

√
λ1, . . . , 1/

√
λr). Then the projector

onto the mean subspace is given by P̄ = ΨV V ⊤Ψ∗.
The metric operator M of the Mahalanobis distance on kernel

Grassmannian is given by

M =ΨK−1
z (

1

N
Q)−1K−1

z Ψ∗ (19)

Q =
N∑
i=1

(BiB
⊤
i − V V ⊤)Kz(BiB

⊤
i − V V ⊤), (20)

We omit this detailed derivation since it is straightforward and space
is limited.
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We would add a regularization to the inverse operation of
Eq. (19). From Eq. (11), the original inverse operation in the ker-
nel Grassmannian is in RKHS, i.e., an inverse operation of ΨXΨ∗

for an appropriate matrix X . In this case, if we add the identity
operator, i.e., ΨXΨ∗ + λI , the inverse operation will be difficult
because we also have to consider the complementary space. In order
to avoid this, we add the projection operator onto the space spanned
by Ψ, i.e., ΨXΨ∗ + λPΨ. It is obvious if Ψ spans the whole space,
PΨ = I . By changing the problem to finite dimensional space, the
metric is given by,

M =ΨK−1
z (

1

N
Q+ λKz)

−1K−1
z Ψ∗. (21)

The Mahalanobis distance between P1 = Φ1A1A
⊤
1 Φ

∗
1 and P2 =

Φ2A2A
⊤
2 Φ

∗
2 is given by

D̂M (P1, P2) =Tr[(P1 − P2)M(P1 − P2)]. (22)

This can be calculated in finite dimensional matrix operations.
If we do not use the basis selection, but use all available training

vectors, the size of the inverse operation in Eq. (19) and the size of
EVD to obtain the mean subspace is nN , where N is the number of
patterns, and each pattern has n vectors. This sometimes is too large
to compute in practical computational environment.

6. EXPERIMENT

We used ETH-80 dataset [12]. The dataset consists of 3280 im-
ages of 3D objects (80 objects × 41 images of each from differ-
ent angles). There are eight categories, ‘apples,’ ‘pears,’ ‘tomatoes,’
‘cows,’ ‘dogs,’ ‘horses,’ ‘cups,’ and ‘cars.’ Each category contains
ten objects. The task was to classify input patterns, each one contain-
ing the 41 images for a particular object. A subspace was obtained
from the input images, and the distances between all template pat-
terns and the input pattern were measured.

Each image has 128 × 128 pixels and has a mask image to re-
move its background. Each input pattern was preprocessed:

1. convert images to gray scale

2. remove background from each image using image masks

3. rescale images to 32 × 32 pixels using bicubic method

4. obtain histogram of gradients (HOG) features [13] for a di-
mension of 1296.

Each pattern thus had 41 vectors, and each vector had a dimension
of 1296. The task was to classify each unlabeled pattern (with 41
vectors) into one of the eight classes.

We randomly selected 72 of the objects (90% of total) for use as
template patterns; the remaining 8 objects (10%) were used as test
patterns. We did this 100 times and generated 100 realizations. For
each realization, we obtained the optimal hyper-parameters such as r
by cross-validation using only the template patterns. Therefore, the
estimated optimal hyper-parameters were different for each realiza-
tion. The Gaussian kernel function k(x1,x2) = exp(−c∥x1−x2∥2)
was used, where c is obtained from {10−2, 10−1.75, . . . , 100} by the
cross-validation. The regularization parameter λ is fixed to λ = 0.1.
For GDA, we used the projection kernel K̂P(P1, P2) = ∥U∗

1U2∥2F .
We classified the patterns using the one nearest neighbor rule.

Table 1. Results of 3D object recognition experiment: mean test
errors (Error) and standard deviations (SD). “-R” denotes RKHS,
and “-I” denotes the input space.

Method Error [%] SD [%]
MAHAL-R 1.83 5.24
PROJ-R 2.50 6.43
BC-R 4.67 7.89
MSM-R 3.67 7.71
GDA-R 8.67 11.96
MAHAL-I 2.67 7.39
PROJ-I 6.50 9.45
BC-I 9.67 10.64
MSM-I 7.50 11.21
GDA-I 5.17 8.44

Table 1 lists the classification error rates and standard deviations.
We compared five methods; i) the proposed Mahalanobis distance
(MAHAL); ii) projection metric (PROJ); iii) Binet-Cauchy metric
(BC); iv) MSM (or the maximum correlation); and v) GDA. “-R”
denotes RKHS, and “-I” denotes the input space.

The proposed method, MAHAL-R exhibited the best perfor-
mance. Except for GDA, kernel extensions improved classification
accuracies.

7. CONCLUSION

We have proposed the Mahalanobis distance on kernel Grassmann
distance. In order to reduce the computational complexity, we have
also proposed a basis vector selection method. In our experiment by
3-D object recognition problem, the proposed method exhibited the
best classification accuracy.

For future works, we apply the proposed method to various prob-
lems including time series data such as EEG data classification prob-
lems.
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