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ABSTRACT

We study the problem of actively learning a multi-index func-
tion of the form f(x) = go(Apx) from its point evaluations,
where Ay € R¥*? with k < d. We build on the assumptions
and techniques of an existing approach based on low-rank
matrix recovery (Tyagi and Cevher, 2012). Specifically, by
introducing an additional self- concordant like assumption on
go and adapting the sampling scheme and its analysis accord-
ingly, we provide a bound on the sampling complexity with
a weaker dependence on d in the presence of additive Gaus-
sian sampling noise. For example, under natural assumptions
on certain other parameters, the dependence decreases from
O(d3/?) to O(d®/4).

Index Terms— Function learning, multi-index functions,
low-rank matrix recovery, Dantzig selector

1. INTRODUCTION

The problem of approximating a function f : Q@ — R (2 C
R?) from its point values arises frequently in machine learn-
ing and statistics. This problem is intractable in general; for
example, for general functions belonging to C*[0,1]? for a
fixed smoothness order s > 0, exponentially many point
samples are needed to obtain a given uniform approxima-
tion error e € (0, 1) [1]. However, under further structural
assumptions on f, the problem becomes tractable, requiring
only polynomially many point samples [2, 3, 4]. In this pa-
per, we consider a class of functions known as multi-index
functions (studied in statistics under the name of “’projection
pursuit regression”, e.g. [5], [6] and [7]), which are of inter-
est in numerous areas including neural networks [8], ridgelets
[9], and econometrics [10].

Before formally stating our setup, we briefly outline some
of the most relevant previous works. Cohen et al. [2] pro-
posed a method for recovering functions of the form f(x) =
g(a’x), where g is a C® function for some s > 1, and a is
both stochastic (i.e. its entries are non-negative and sum to
one) and compressible. Leveraging on the latter assumption,
tools from compressive sensing were applied. Fornasier et
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al. [3] extended this work to handle functions of the form
f(x) = g(Ax), where g is a C? function and A is a full-rank
k x d matrix with compressible rows. The work most rele-
vant to ours is that of Tyagi and Cevher [4] (see also [11]),
who proposed methods based on low rank matrix recovery in
order to drop the assumption that A has compressible rows.

A key limitation of the results presented in [4] is the de-
pendence of the sampling complexity on d in the case of
noisy samples. Specifically, under some natural assumptions,
the bound therein on the sampling complexity is O(d%/?).
The main result of this paper shows that, by a variation of the
techniques in [4] and the introduction of a self-concordant
like assumption [12], this can be improved to O(d/*).

1.1. Problem Setup and Assumptions

Let € € (0,1) be a positive constant, and let Ba(r) be the

ball of radius r in RY. We consider the approximation of a
function f : Ba(1 4 €) — R of the form

f(x) = go(Aox) (1)

where Ay € is a full-rank matrix with £ < d, and gg
is a function on R* (both of which are unknown). The goal
is to construct an approximation f of f based on a number of
samples whose location may be chosen freely. We consider
noiseless samples in Section 3, and noisy samples in Section
4. We consider the trade-off between the number of samples
and the worst-case approximation error ||f — f||L... Ata
high level, this problem is tractable due to the reduction in
dimensionality (from d to k).

We proceed by introducing the class of self-concordant
like functions. The definition resembles the usual defini-
tion of self concordance, but it should be noted that neither
class is a subset of the other. A notable example of a self-
concordant like function is the logistic function, which ap-
pears frequently in neural network learning problems.

For a multivariate function h(y) and a vector § € Z™,
albly
Oy -y

B8] = 2202 Bi (e-g. D*h(y)[u, u] = uT V2h(y)w).

Definition 1.1 A function h : dom(h) — R defined on an
open domain dom(h) C R™ is self-concordant like with pa-
rameter M > 0 with respect to a norm || - || on R™ if

Rk‘Xd

we define the derivative operator DPh = , where
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1. h € C3(dom(h));

2. |D3h(x)[u, v, V]| < M |lu|| D?h(x)[v, V] for all x €
dom(h) and u,v € R”.

Our assumptions on f and go are given as follows:

1. The function gy belongs to C2, and hence there exists a
constant Cp 2 > 0 such that

max || D%go|| < Co2, ()
[B]<2

where the ¢..-norm is understood to act on the vector-
ization of the derivative matrix in the case that 5 = 2.

2. Letting pga—1 be the uniform measure on the unit
sphere S?1 in d-dimensional space, the matrix

HT = /S . Vix)Vx) duga-i(x)  (3)

is well-conditioned in the sense that its singular values
satisfy o (H7) > -+ > op(H’) > a > 0 for some
positive constant c. It should be noted that o may scale
with d, typically as O(1/d); see [4] for examples.

3. The function gy is self-concordant like with respect to
the ¢o-norm, with some parameter My > 0.

The final of these assumptions is the key difference here com-
pared to [4].

As was noted in [3], we can reduce (1) to a simpler model
with a row-orthonormal matrix A:

f(x) = g(Ax). @)

Specifically, this follows from a singular value decomposi-
tion (SVD): Write Ag = UXVT, and set A = V7T and
g9(y) = go(UXy). By a direct differentiation, it is readily
verified that the derivatives of g are bounded as in (2) with a
constant Cy := 0'8 Co,2, where oy is the spectral norm of Ay.

Applying the chain rule to (1) and using the assumption
3., it can similarly be verified that f is also self-concordant
like, with parameter M := ogMjy. As will be seen in the
later sections, this implies that the consideration of the sim-
plified model (4) only affects our analysis up to multiplicative
powers of 0g. We assume that o is uniformly bounded in d,
implying that these factors do not affect the resulting scaling
laws, i.e. C5 and M are uniformly bounded.

2. SAMPLING SCHEME

In this section, we describe a method for taking samples and
using them to construct a low-rank matrix recovery problem
that will provide the starting point of our analysis.

2.1. Sampling Points

We describe a scheme taking 2m,me samples, where m,,
and mg are integers. As in [4], we construct a set of sam-
pling centers X = {&,,€&,, ""£mx}’ drawn i.i.d. from the

unit sphere S*~! according to the uniform measure piga—:.
For each sampling center §; (j = 1,...m,), we randomly
construct a set of direction vectors {¢q j, -+, Py it
where the entries of the vectors are i.i.d. and equiproba-
ble on {ﬁ, NS } These are collected into mg matrices

o, = [‘75@,1, . (;Si’mx] dxmy” For each sampling center £ and

sampling direction ¢, we take two samples of the function
f, namely f(& + e¢) and f(€ — e¢) (though as we will see
shortly, it suffices to know only their difference).

2.2. Formulation of a Low-Rank Recovery Problem

Let X := AT[Vg(A&)|...|Vg(AE,, )kxm, be a matrix
containing the gradients of g at the sampling centers. Since
A has rank k , the matrix X also has low rank (at most k). As
we will see shortly, the low rank property of X allows us to
use low rank matrix recovery techniques to approximate X
and infer, up to a rotation, the subspace matrix A.

Since we cannot evaluate Vg directly, the elements of the
gradient matrix X are estimated via a linear approximation
of f. We make use of the following Taylor expansion:

62
f(E+ed) = (&) + (VI(&) d)e+ 50" V/(€)
63
+5 V) 0¢8] 9

for a suitable value of (™. By forming a similar expansion
with —e in place of ¢, and taking the difference between the
two expansions, we obtain

(VH(€),8) = o (F(E+eh) ~ F(E— ) + E(&.c. )
(6)
where the remainder term is given by

€

2
Blged)= 5

[V2(CT) (8,001 + VPF(CT) [0, 0, 8]
@)

for suitably chosen ¢~ € [€ — e¢p, €] and ¢ € [€, & + 9]

Since f(€ + ep) — f(€ — €¢) is known, (6) allows us
to obtain information about the gradients up to the error term
E(&,¢, ¢) and possible sampling noise. We observe that the
second-order terms have canceled in (6); this is a key a dif-
ference in our analysis compared to [4].

Applying (6) for each sampling center and direction, we
can obtain the following linear system:

y=F(X)+z+e ®)
where y are the measurements, z represents possible sam-

pling noise, and e represents the accumulated error:

vi =50 0 [F(& +ediy) = F(&; — <))

j=1

& = ZE(gjvea ¢z)
j=1
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The linear measurement operator F : RY*™x — R™® s
defined as F(X), = Tr (; X).

Proposition 2.1 For the error term in (8), we have

k2 Co d*/? m,,

6m¢,

lellme < M 9)

Proof. Let @ﬁj denote V3£ () (i bi 4, ¢ ;] and bi
denote V3£ ({5 ;) [@ij: ®i j» i ;] - By definition,

2

) 62 2 me My
el = (12> > et |- (0
i=1 |j=1

Since f is self-concordant like with parameter M, we have

|()02:j} < M| i, D?f( :rj) [¢i,j7¢i,j] .

Moreover, a direct differentiation yields

|D21(6E) [0 00| = [o1,47 V2g(ACT) A 6,
14,12, IV29(ACE) Il

dk?Cy
<

mo

IN

I

since [|[V2g(ACT;)||r < kCa by the definition of Cy fol-
lowing (4). Handling D?f(¢ ;.;) similarly and applying the
triangle inequality, we obtain

d3/2 k% Cy

3/2
Mg

oy + eiyl <2M

Combining this with (10), we obtain the desired result.

3. NOISELESS OBSERVATIONS

We proceed along the same lines as in [4]. First, we look at
the noise free setting of (8), i.e. y = F(X) + . We use
low-rank recovery to recover an approximation of X, which
is then used to obtain an approximate subspace matrix A with
a guaranteed lower bound on HAATH r. This is then used to
obtain the final function approximation.

3.1. Stable Low Rank Recovery

As shown in [4], under the random construction of the sam-
pling directions, the linear measurement operator J satisfies
the matrix restricted isometry property [13] with high proba-
bility. More precisely, for all rank-k matrices, it holds that

(1= s IXklE < IFX)E, < (0 + )| XellE

with probability at least 1 — 2¢ =@ 4(s)+(d+tmx+1)u(r) where
the RIP constant xj satisfies 0 < ki < xk < 1. The RIP
property, together with the low-rank property of the matrix
X, allows us to use stable low-rank recovery algorithms to
obtain an approximation X of X.

We make use of the following convex optimization prob-
lem, known as the matrix Dantzig selector [13]:

XDS =argmin || M|, st||F (y — F(M))|| <A, (A1)

where || - ||« and || - || are the nuclear and operator norms,
F* i R™ — RY™x s the adjoint operator of F, and X is a
tuning parameter.

We seek to choose A such that X is feasible i.e., || F*(g)| <
A. The following lemma serves this purpose, and is proved
using the steps in Appendix C of [4].

Lemma 3.1 For any e satisfying (9), we have

62k202d3/2

IF* ()] < A" := M X1+ 8)2 (12)

6m¢>

with probability at least 1 — 2e~™®(5)+(d+mx+1)ulx)

We now choose A in (11) to equal A* in (12), and apply
Corollary 1 from [4] (based on Theorem 2.4 in [13]) together
with Lemma 3.1. The result is the following corollary.

Corollary 3.1 Let X ](Dks) be the best rank-k approximation to
the solution Xps of (11) in Frobenius norm. If |F*(e)| <

A= N and kap, < k < V2 — 1 then with probability at least
1— 26—’mq>q(n)+4k:(d+7nx+1)u(n) we have

e*kd 022 d3m?

I = X{RIF < 4C0kX? = CoM®— 25X (1 4 ).
[

3.2. Subspace Approximation

Next, we perform an SVD of X](Dks) , namely X](Dks) = AZV.
While our algorithm does not necessarily recover an accu-
rate estimate of A, the following lemma provides conditions
under which it does provide an accurate estimate up to a rota-
tion. The proof follows Appendix E of [4], with the key tool
being the matrix Chernoff bound.

Lemma 3.2 Fixm, > 1, me < myd, and0 < p < 1. If

€<1( 3me >1/2< (1-pa )1/4
k\MCy(VE+V2) (1+K)Cod?*my )’
(13)
—myap?

then with probability at least 1 — kexp{w —

2exp{—maq(r) + 4k(d + m, + 1)u(k)}, we have

1/2
272
14
@—PmﬁU—TP) (o

9 9 64}’€5C’§d3mf< )
where 72 = Cy M oz (1+ &) is the error bound
m

>
derived in Corollary 3.1, and « is defined following (3).

IAAT || > (k -
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3.3. Function Approximation

We now form an approximation of f, namely f (x) = g(/lx)
with §(y) := f(ATy). This should not be considered the
final approximation, as its evaluation requires sampling f;
however, one can form the final estimate f by uniformly ap-
proximating ¢ via quasi-interpolants [4]. The resulting ap-
proximation error is bounded in a straightforward fashion
via the triangle inequality. Since these arguments are well-
known, we omit them here, and we focus our attention on
bounding the error between f and f.
It was shown in Appendix F of [4] that

If = fll. < CaVE(1+)(k—[[AAT|Z).  (19)

Under the conditions of Lemma 3.2, we can combine this
bound with (14) to deduce that

. 2
If = fllo. < CaVE(1+9) var (16)
VI3 =pmya—1
_ 2
with probability 1 — k exp {%Caf} —2exp{—maeq(k)+
2

4k(d + m,, + 1)u(x)} or higher. Upper bounding € by one
in (16) and performing some algebra, it follows that || f —
fllL., < 0 provided that

- dy/(1 = p)my
2052k + 6

Combining this with the definition of 7, we see that this holds
provided that

a7

<( 36me >1/2< (1-pa )1/4
6 - .
T \MCy(2CV2k 4 6) (1+ r)Cok>d3m,,
(18)
Finally, we fix p; and ps and choose m., and mg as in [4]:
log(2/p2) + 4k(d + my + 1)u(k)
q(k)

, (19

me

2
2

2kC
> op? log(k/p1). (20)

My

The former choice ensures that F satisfies the RIP with high
probability, and the latter ensures that the gradient matrix X
has rank k. Putting things together, we obtain the following.

Theorem 3.1 Fix the constants § € RT, p € (0,1), k <
V2—1,p; > 0, and py > 0, and suppose that e, my and ma
satisfy (18)—(20) and the conditions of Lemma 3.2. Then the
function f satisfies || f — fllL.. < d with probability at least
1—p1—po

From Theorem 3.1, it is possible to obtain uniform approxi-
mation guarantees on f with high probability under the scal-

ings € = O(al/Q), my = O(kl(;gk)’ and mg = O(k(d+

di/4
my)). The latter two scalings coincide with those in [4],

whereas the former is significantly different to the behavior
@ .

e=0 (W) from [4]. We now proceed to the noisy case,

where this is seen to have significant implications.

4. NOISY OBSERVATIONS

In practical applications, one generally cannot expect to ac-
quire perfect function samples, and it is therefore impera-
tive to understand the effects of noise. Here we consider
the case that the samples are corrupted by N(0, 02) Gaus-
sian noise. Since each entry z; of z in (8) is a sum of 2m,,
noise terms normalized by 2e, the resulting distribution is
zi ~ N(0,my 0% /2€%).

Once again, for the matrix X to be feasible in (11), we
need to tune the parameter A in (11). Using Lemma 1.1 in
[13] and Lemma 3.1 of the present paper, it can be shown
that with high probability,

V2o
€

|F*(e +2)]| <A := 2(1 + k)myma

62k202d3/2mx

6ma (1+5)2, @D

where v > 24/logl2.

The analog of Corollary 3.1 holds true with this modified
value of A = \*, and we again seek to make the upper bound
on the recovery error || X — X 1()ks) || » small by making A small.
However, as was observed in [4], we can no longer make
X smaller by decreasing €, as now A\* also depends on ¢~ .
Assuming that o is constant (i.e. it does not decay with d), the
only immediate way to overcome this issue is to re-sample
every point O(e~!)-times and take the average. By doing
this, the sampling complexity becomes

d1/4
m=0 (mxm(p) . (22)

al/?

As a concrete example, in the case that « = O(1/d) (see
[4] for examples), we have to re-sample each point for only
O(d3/*)-times, which is a significant improvement compared
to the O(d*/?) behavior derived in [4].

The latter result was used in [14] to derive the regret
bound for the problem of optimizing an unknown function
from noisy samples. In future work, we will investigate how
the additional assumption and improved sampling complex-
ity bound in this paper impact the regret bound therein.

5. CONCLUSIONS

We have presented a new scheme for approximating func-
tions of the form (1), considering both noiseless and noisy
point evaluations. Introducing the self-concordant like prop-
erty and adapting the sampling scheme of [4], we derived
a bound on the sampling complexity with a significantly
weaker dependence on d compared to that in [4]. Moreover,
we studied the interplay between the self-concordant like as-
sumption and the matrix Ao, allowing us to handle arbitrary
matrices having a bounded spectral norm.
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