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ABSTRACT 

 
Sparse estimation  has received a lot of attention due to its 

broad applicability. In sparse channel estimat ion, the 

parameter vector with sparsity characteristic can be well 

estimated from noisy measurements through sparse 

adaptive filters. In prev ious studies, most works use the 

mean square error (MSE) based cost to develop sparse 

filters, which is rat ional under the assumption of Gaussian 

distributions. However, Gaussian assumption does not 

always hold in real-world environments. To address this 

issue, we incorporate in this work l1-norm and reweighted 

l1-norm into the minimum error entropy (MEE) criterion 

to develop new sparse adaptive filters, which may  

perform much better than the MSE based methods 

especially in non-Gaussian situations, since the error 

entropy can capture higher-order statistics of the errors . 

Furthermore, a new approximator of l0-norm based on the 

Correntropy Induced Metric (CIM) is also used as a 

sparsity penalty term (SPT). Simulation results show the 

excellent performance of the proposed algorithms. 
Index Terms—Sparse estimation, minimum error 

entropy, correntropy induced metric, impulsive noise

 

 

1. INTRODUCTION 

 

Sparse channel estimation is to estimate a parameter 

vector of a channel with most of zero tap under noisy 

environment, which  is in general based on a traditional 

adaptive filter with a sparsity penalty term (SPT). In  

recent years, many sparse adaptive filters have been 

developed for sparse systems identification. Typical 

examples include sparse least mean square (LMS) [1-4], 

sparse recursive least square (RLS) [5], and their 

variations [6-12].  

However, there are some limitations of the existing 

sparse adaptive filters. When data are non-Gaussian 

(especially when data are disturbed by impulsive noise or 

containing outliers), they may perform very poorly. The 

main reason for this is that most of the existing 

algorithms are developed based on the MSE criterion, 

which relies heavily on the assumptions of Gaussian 

distributions. This assumption does not always hold 

particularly in most practical applications. For instance, 
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different types of artificial noises in electronic devices, 

atmospheric noises, and lighting spikes in natural 

phenomena, can be described more accurately using 

non-Gaussian noise models [13, 14]. When sparse filters 

are applied in such situations, the performance will 

become much worse due to the sensitivity to the 

impulsive noises or outliers [15].  

Information  theoretic learning  (ITL), on the other 

hand, provides a nice approach for dealing with 

non-Gaussian signal processing [16,17]. The min imum 

error entropy (MEE) criterion in ITL was successfully 

used in adaptive filtering to improve the learn ing 

performance in non-Gaussian noises [18-26]. However, to 

the best of our knowledge, the MEE has not yet been 

extended to the sparse channel estimat ion. In this work, 

we use the MEE instead of the MSE to develop sparse 

adaptive filters. The new adaptive filters are much more 

robust against the impulsive non-Gaussian noises.   

As an important part, the SPT in sparse filters enable 

them to fit  well the sparse structures of the channel 

systems. Finding the sparsest solution leads to the l0-norm 

minimizat ion, an NP-hard problem. In existing methods, 

the l1-norm or reweighted l1-norm are frequently used as 

the SPT. As a nice approximator of the l0-norm, the 

Correntropy Induced Metric (CIM) can also be used as a 

sparsity penalty term in sparse estimat ion [27, 28]. In the 

present paper, we will incorporate the above mentioned 

SPTs (l1-norm, reweighted l1-norm and CIM) into the 

sparse aware MEE algorithms.  

 

2. MEE AND CIM 

 

2.1. Minimum Error Entropy Criterion 

 

Consider a channel model, where the input vector 

 1 1( ) , , , )
T

n n n MX n x x x     at time n is sent over an FIR 

channel with parameter vector * * * *

1 2[w ,w , ,w ]T

MW    ( M is 

the size of the channel memory). Assume that the channel 

parameters are real-valued, and most of them are zero. 

The received signal ( )d n is then 

       *( ) ( ) ( )Td n W X n v n               (1) 

where ( )v n denotes an interference noise. 

Let 1 2( ) [w (n),w (n), ,w (n)]T

MW n   be the weight vector of an  

adaptive filter. The instantaneous error can  be calculated 

as (n) ( ) ( )e d n y n  ,where y( ) ( ) ( )Tn W n X n is the filter 

output. Based on Parzen window approach, the 
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probability density function (PDF) of the error can be  

estimated as [16,17]  
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where ( )  denotes a kernel function with bandwidth  . 

Gaussian kernel function is one of the most popular 

kernels, which is given by 
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Renyi‟s quadratic entropy estimator for a set of error 

samples can be expressed as [16,17] 
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The argument ( (e)V ) of the „log‟ in (4) is called the 

informat ion potential. Obviously, minimizing the error 

entropy is equivalent to maximizing the informat ion 

potential. Thus, the optimization cost for MEE can be  

                (e) max (e)MEE
W

J V                (6) 

A steepest ascent algorithm for estimat ing the weight 

vector can be derived as 

            ( 1) ( ) (e)W n W n V                 (7) 

where  denotes a step size, and (e)V stands for the 

gradient of the informat ion potential with respect to the 

weight vector, expressed as 
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2.2. Correntropy Induced Metric 

 

Given two vectors in a sample space:  1, ,
T

NX x x  , 

 1, ,
T

NY y y  , the Correntropy Induced Metric (CIM) is 

defined as [27] 
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   is the estimation of the 

correntropy between X and Y (see [27] for the defin ition 

of correntropy), the kernel is assumed to be a Gauss ian 

kernel with the kernel width  ,and (0) 1 2   . The CIM 

provides a nice approximation for the l0-norm. Given a 

vector  1, ,
T

NX x x  , the l0-norm can be approximated by 

[27, 28] 
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With Gaussian kernel, the CIM behaves like an l2-norm 

when the two vectors are close, like an l1-norm outside 

the l2-norm zone, and like an l0-norm as they go farther 

apart [27, 28]. It has been shown that if ix  , 0ix  , 

then as 0  , one can get a solution arbitrarily close to 

that of the l0-norm, where  is a small positive number 

[28]. As an approximat ion of the l0-norm, the CIM favors 

sparsity and can be used as a penalty term in sparse 

channel estimation.  

 

3. SPARS E MEE ALGORITHMS  

 

3.1. S parse MEE with Zero-Attracting  (l1-norm) 

Penalty Term (ZAMEE)  

 

To develop a sparse MEE algorithm with zero-attracting 

(l1 norm) penalty term, we introduce the cost function 
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where
1(n) || W(n)) ||ZAJ  denotes the l1-norm of the estimated 

parameter vector, L is the sliding data length (SDL), 

and
1 is the kernel width in MEE. In (11), the MEE term 

is robust to impulsive noises, and the ZA penalty term is a 

sparsity inducing term, and the two terms  are balanced by 

a weight factor 0  . 

    Based on the cost function (11), one can derive the 

following adaptive algorithm: 
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(12) 

where   is the zero-attractor control factor, 

and ( )sign  is a component-wise sign function. The 

algorithm (12) is referred to as the ZAMEE algorithm.  

3.2. Sparse MEE with the Logarithmic Penalty Term 

 

In this part, we derive a sparse MEE algorithm with a 

logarithmic penalty term which also can generate a zero 

attractor. The corresponding cost function is given by 
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where the log-sum penalty 
1

log(1 | w | / )
M

i
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 behaves more 

similarly to the l0-norm than the l1-norm ||W||1 , and  is a 

positive number. Then, a  gradient based adaptive 

algorithm can be easily derived as   
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where
1

'


 . This algorithm is referred to as the 

RZAMEE algorithm.  

 

3.3. Sparse MEE with CIM Penalty Term 

 

One can also employ the CIM as a sparsity penalty term 

to develop a sparse MEE algorithm. A new cost function 

can be defined by 
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where
2 denotes the kernel width in CIM. The second 

term (i.e . the CIM) with a s maller kernel width will 

become a sparsity inducing term. Based on the new cost 

function of (15), we derive a gradient based adaptive 

algorithm 
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(16)                                                  

The above algorithm is referred to as the CIMMEE 

algorithm. The kernel width 
2 is a key parameter in the 

penalty term. A proper kernel width will make CIM be a 

good approximator for the l0-norm [27, 28].  

 

4. SIMULATION RES ULTS  

 

In this section, we perform simulat ions on time-vary ing 

channel estimat ion to demonstrate the performance of the 

proposed sparse aware MEE algorithms (ZAMEE, 

RZAMEE, and CIMMEE), compared with several other 

algorithms including least absolute deviation (LAD) [29], 

MEE, ZA LMS, and RZALMS. The parameter vector of 

the unknown channel is assumed to be  

*

[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2000

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] 2000 3000

[1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1] 3000

n

W n

n




  
           

 (17) 

In (17), the channel memory size M is 20 . The channel 

model has a sparsity of 1/20 during 1 to 2000 iterations , 

while the sparsity changes to 1/2 when the iteration is 

from 2000 to 3000, and it is non-sparsity after 3000 

iterations. The input signal  ( )x n is a white Gaussian 

random sequence with zero mean and unit variance. All 

simulation results below are obtained by averaging over 

100 independent Monte Carlo runs , and each run 

performs 5000 iterat ions. 

We employ the alpha-stable distribution [30] as 

impulsive noise model which has been widely applied in  

the literature  [31-32]. The characteristic function of the 

alpha-stable distribution is given by  

          (t) exp{j t | t | [1 j sgn(t)S(t, )]}f           (18) 

in which 
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where (0,2]  is the characteristic factor,    is 

the location parameter, [ 1,1]   is the symmetry  

parameter, and 0   is the dispersion parameter. Such a 

distribution is called a symmetric alpha-stable ( S S ) 

distribution when 0  . We define the parameters vector 

as ( , , , )V     . 

   First, we investigate the convergence behavior of the 

proposed methods in impulsive noises, where the noise 

parameters vector is (1.2,0,0.2,0)V  .  The SDL is L=20. 

The step size is set at 0.03 for all algorithms. The kernel 

widths in MEE and CIM are 2.0 and 0.04, respectively. 

For all sparse aware algorithms,   is set at 0.0001. The 

parameter '  for RZALMS and RZAMEE is 10. The 

average convergence curves in terms of the mean square 

deviation (MSD) are shown in  Fig.1. As one can see from 

the MSD results, when the channel system is very 

sparse(before the 2000
th

 iteration), the sparse aware MEE 

achieve  faster convergence rate and better steady-state 

performance than the  other robust algorithms  (LAD, 

MEE), while  ZALMS and RZALMS work poorly  as  

they are  sensitive to  the  impulsive noises. Thus, we 

only consider the MEE, LAD algorithms comparing with 

the proposed algorithm in next experiment case. In 

addition, CIMM EE achieves lower MSD than ZAMEE 

and RZAMEE since the CIM provides a nice 

approximation for the l0-norm.  After the 2000
th

 iterat ion, 

as the number of non-zero taps increases to ten, the 

performance of the ZAMEE and RZAMEE deteriorates 

while the CIMMEE maintains the best performance 

among all the sparse aware filters. After 3000 iterations, 

the sparse aware MEE algorithms still perform 

comparable with the MEE even though the system is now 

completely non-sparse.  
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Fig.1. Tracking and steady-state behaviours of 20-order 

adaptive filters  
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   Second, we conduct the simulat ion with different   

(0.2,0.4,0.6,0.8,1) and  (1,1.2,1.3,1.4,1.5,1.6,1.7)to  

further demonstrate the performance of the proposed 

method. In  this simulation, we mainly  focus on the fully  

sparse channel system in the first stage of the proposed 

model. The 0.02  for all algorithms, and other parameter 

settings are the same as in the previous simulat ion for all 

algorithms. The MSD, versus different   and  , are 

illustrated in Fig. 2 and Fig. 3 respectively. Evidently, the 

sparse aware MEE algorithms perform well with the 

different parameter of the impulsive noise model. 

Moreover, we see that the CIMMEE achieves much lower 

MSDs in all the cases.  Simulation results confirm that 

the proposed sparse aware MEE algorithms, especially  

CIMMEE, can efficiently estimate a sparse channel in  

impulsive noise environment. 
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Fig.2. Steady-state MSD versus    
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Fig.3. Steady-state MSD versus    

Third, we perform simulations to investigate how the 

kernel width 1 affects the performance, which is an 

important parameter for the sparse aware MEE. Here, the 

steady-state MSDs of the CIMMEE with different 1 (0.5, 

1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5) and different  (1, 1.2, 

1.4, 1.6, 1.8, and  2) are computed. Other parameters are 

set as: 1  , 0.01  , 0.0001  , 2 0.04  and ' 10  . The 

results are given in Fig.4. One can see that the CIMMEE 

achieves different MSDs with different
1 and under 

different noise distributions . In this example, the lowest 

MSD will be obtained around
1 1.5  . From the simulation  

results we may conclude that the kernel width in MEE 

has a significant influence on the performance. The 

selection of the kernel width is critical to the success of 

the sparse aware MEE, and this will be an interesting 

research topic in the future study. 
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Fig.4. Steady-state MSD of CIMMEE with d ifferent 

kernel size
1 for d ifferent . 

 

5. CONCLUS ION 

 

In this work, we develop several sparsity aware min imum 

error entropy (MEE) algorithms, including ZAMEE, 

RZAMEE, and CIMMEE, which  are derived by 

incorporating different sparsity penalty terms into the 

MEE criterion. Simulation results of sparse channel 

estimation show that the proposed methods can achieve 

excellent performance and outperform most of the 

existing sparsity-aware algorithms especially when the 

measurements are disturbed by impulsive non-Gaussian 

noises. 
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