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ABSTRACT
This paper presents a novel iterative Bayesian algorithm,
Block Iterative Bayesian Algorithm (Block-IBA), for recon-
structing block-sparse signals with unknown block struc-
tures. Unlike the other existing algorithms for block sparse
signal recovery which assume the cluster structure of the
non-zero elements of the unknown signal to be independent
and identically distributed (i.i.d.), we use a more realis-
tic Bernoulli-Gaussian hidden Markov model (BGHMM)
to capture the burstiness (block structure) of the impulsive
noise in practical applications such as Power Line Com-
munication (PLC). The Block-IBA iteratively estimates the
amplitudes and positions of the block-sparse signal based
on Expectation-Maximization (EM) algorithm which is also
optimized with the steepest-ascent method. Simulation re-
sults show the effectiveness of our algorithm for block-sparse
signal recovery.

Index Terms— Block-sparse, iterative Bayesian algo-
rithm, steepest-ascent.

1. INTRODUCTION

Compressed sensing aims to recover the sparse signal from
underdetermined systems of linear equations. If the struc-
ture of the signal is exploited, the better recovery performance
can be achieved. A block-sparse signal, in which the nonzero
samples manifest themselves as clusters, is one of the impor-
tant structured sparsity. Block-sparsity has a wide range of
applications in multiband signals [1], audio signals [2], struc-
tured compressed sensing [3], and the multiple measurement
vector (MMV) model [4].

The mathematical model of block-sparse signal recon-
struction is given by

y = Φw + n (1)

where Φ ∈ RN×M (N < M ) is a known measurement
matrix, y ∈ RN is the available measurement vector, and
n ∈ RN is the corrupting noise. we aim to estimate the origi-
nal unknown signal w ∈ RM with the cluster structure

w = [w1, . . . , wd1︸ ︷︷ ︸
wT [1]

, . . . , wdg−1+1, . . . , wdg︸ ︷︷ ︸
wT [g]

]T (2)

where w[i] denotes the ith block with length di which are not
necessarily identical. In the block partition (2), only k ≪ g
vectors w[i] have nonzero Euclidean norm. Given the a pri-
ori knowledge of block partition, a few algorithms such as
Block-OMP [5], mixed ℓ2/ℓ1norm-minimization [6], group
LASSO [7] and model-based CoSaMP [8], work effectively
in the block-sparse signal recovery. These algorithms require
the knowledge of the block structure (e.g. the location and
the lengths of the blocks). However, in many applications,
the prior knowledge about the block structure is often un-
available. For instance, the accurate tree structure of the co-
efficients for the clustered sparse representation of the im-
ages is unknown a priori, and the impulsive noise in Power
Line Communication (PLC) occures in bursts with the un-
known locations and lengths [9]. Hence, designing an adap-
tive method for estimating the block partition and recover-
ing the clustered-sparse signal simoltanously remains a chal-
lenge. To address this challenge, some algorithms requiring
very little a priori information have been proposed recently
[10]-[13]. However, all these algorithms use the i.i.d. model
to describe the cluster structure of the non-zero elements of
the unknown signal, which restricts their applicability and
performance because many practically important signals, e.g.
the impulsive noise in PLC, do not satisfy the i.i.d. condition.
It is therefore necessary to develop reconstruction algorithms
for block-sparse signals using more realistic signal model.

In this paper, we propose a novel iterative Bayesian
algorithm (Block-IBA) using a Bernoulli-Gaussian hidden
Markov model (BGHMM) [9] for the block-sparse signals.
This model better captures the burstiness (block structure) of
the impulsive noise and hence is more realistic for practical
applications such as PLC.

The proposed Block-IBA reconstructs the supports and
the amplitudes of block-sparse signal w using an expecta-
tion maximization (EM) algorithm when its block structure
is completely unknown. In the expectation step (E-step) the
amplitudes of the signal w are estimated iteratively whereas
in the maximization step (M-step) the supports of the signal
w are estimated iteratively. To this end, we utilize a steepest-
ascent algorithm after converting the estimation problem of
discrete supports to a continuous maximization problem. Al-
though using the steepest-ascent algorithm exists in the liter-
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ature for recovering the sparse signals (e.g. [14]), investiga-
tion of this method is unavailable in the literature of block-
sparse signal recovery. As a result the proposed Block-IBA
algorithm offers more reconstruction accuracy than the ex-
isting state-of-the-art algorithms for the block-sparse signals
which are not i.i.d. This is verified by the experimental re-
sults, where the block-sparse signal comprises a large number
of narrow blocks.

2. SIGNAL MODEL

In this paper, the linear model of (1) is considered as the mea-
surement process. The measurement matrix Φ is assumed
known beforehand and also its columns are normalized to
have unit norms. Furthermore, we model the noise in model
(1) as a stationary, additive white Gaussian noise (AWGN)
process, with n ∼ N

(
0, σ2

nIN
)
. To model the block-sparse

sources w, we introduce two hidden random processes, s and
θ [14]–[16]. The binary vector s ∈ {0, 1}M describes the
support of w, denoted S, while the vector θ ∈ RM repre-
sents the amplitudes of the active elements of w. Hence, each
element of the source vector w can be characterized as

wi = si · θi (3)

where si = 0 results in wi = 0 and i /∈ S , while si = 1
results in wi = θi and i ∈ S. Hence, in vector form we can
show that

w = Sθ, S = diag(s) ∈ RM×M . (4)

To model the block-sparsity of the source vector w, we as-
sume that s is a stationary first-order Markov process defined
by two transition probabilities: p10 , Pr {si+1 = 1|si = 0}
and p01 , Pr {si+1 = 0|si = 1} [15]. Also, in the steady-
state operation of Markov process we assume p , Pr {si = 0}.
Therefore, the two parameters p and p10 completely describe
the state process of the Markov chain. As a result, the remain-
ing transition probability can be determined as p01 = p·p10

(1−p) .
The length of the blocks of the block-sparse signal is de-
termined by parameter p01, namely, the average number of
consecutive samples of ones is specified by 1/p01 in the
Markov chain.

Because the s vector is a stationary first-order Markov
process with the two transition probabilities p10 and p01, p(s)
is given by

p (s) = p(s1)

M−1∏
i=1

p (si+1|si) (5)

where p (s1) = p(1−s1)(1− p)s1 and

p (si+1|si) =


(1− p10)

(1−si+1)p
si+1

10 , si = 0,

p
(1−si+1)
01 (1− p01)

si+1 , si = 1.

(6)

Note that the amplitude vector θ has also a Gaussian dis-
tribution with θ ∼ N

(
0, σ2

θIM
)
. Therefore, from (3) it is

obvious that p (wi|si, θi) = δ(wi − siθi), where δ(·) is the
Dirac delta function. If we follow the marginalization rule to
remove si and θi, we can find the probability density of the
sources as

p(wi) = pδ(wi) + (1− p)N
(
wi; 0, σ

2
θ

)
(7)

where σ2
θ is the variance of θ. Equation (7) shows that the

distribution of the sources is a Bernoulli-Gaussian hidden
Markov model (BGHMM) which is utilized to implicitly
express the block sparsity of the signal model due to the
point-mass distribution at wi = 0 and the hidden variables si.

3. BLOCK ITERATIVE BAYESIAN ALGORITHM

In this section, we propose an algorithm to estimate the un-
known original signal w by estimating its components (s and
θ in (4)) iteratively. We follow a two-step approach to esti-
mate the w vector.

In the first step, we estimate the amplitude vector θ based
on the known estimation of s vector and the mixing observa-
tion vector y. We call this expectation step (E-step). Hence,
if we assume that the estimated vector s, referred to as ŝ, is
known, we obtain the MMSE estimation of θ (referred to as
θ̂) which is given as

θ̂ = σ2
θ ŜΦ

TΣ−1
ŝ y (8)

where

Σŝ = E
[
yyT | ŝ

]
= σ2

nIN + σ2
θΦŜΦT . (9)

Following the Sparse Bayesian Learning (SBL) frame-
work [17], we consider a Gaussian prior distribution for am-
plitude vector θ, i.e. p (θ; γi) ∼ N

(
0,Σ−1

0

)
where Σ0 =

diag(γ1, γ2, · · · , γM ). Furthermore, γi are the non-negative
elements of the hyperparameter vector γ, that is, γ , {γi}.
We assume Gamma distributions as hyperpriors over the hy-
perparameters {γi}:

p (γ) =

M∏
i=1

Gamma (γi | a, b) =
M∏
i=1

Γ (a)
−1

baγa−1
i e−bγi

where Γ (a) =
∫∞
0

ta−1e−tdt is the Gamma function and
a = b = 10−4. From (4), we can rewrite the linear model
of (1) as y = ΦSθ + n = Ψθ + n where Ψ = ΦS. It can
be shown that the posterior p

(
θ | y;γ, σ2

n

)
is a multivariate

Gaussian with the following mean and covariance

µθ = σ−2
n ΣθΨ

Ty (10)

Σθ =
(
σ−2
n ΨTΨ+Σ0

)−1

. (11)
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Hence, the MAP estimate of θ is

θ̂ =
(
Ψ̂T Ψ̂+ σ2

nΣ0

)−1

Ψ̂Ty (12)

where Ψ̂ = ΦŜ. Using the EM algorithm [17], an estimate
for hyperparameter γ is γ̂i = 1+2a

(µ̂θ,i)
2+Σ̂θ,ii+2b

where µ̂θ,i de-

notes the ith entry of µθ in (10) and Σ̂θ,ii denotes the ith
diagonal element of the covariance matrix Σθ in (11).

We call the second step of our approach Maximization
step (M-step). In this step, we find the estimate of s with the
assumption of known vector θ̂ and the observation vector y.
Therefore, we can write the MAP estimate of s as

ŝ = argmax
s

L (s) = argmax
s

(log(p(s)p(y | s, θ̂))). (13)

The maximization is performed over all 2M possible sets of
s vectors, which is intractable when M is large. This is be-
cause the computation should be done over the discrete space.
One way around this exhaustive search is to convert the max-
imization problem into a continuous form. Therefore, in this
section we propose a method to convert the problem into a
continuous maximization and apply a steepest-ascent algo-
rithm to find the maximum value. To this end, we model the
elements of s vector as a Gaussian Mixture (GM) with two
Gaussian variables centered around 0 and 1 with sufficiently
small variances. Hence, each discrete element of s vector, i.e.
si can be given as

p(s1) ≈ p N
(
0, σ2

0

)
+ (1− p)N

(
1, σ2

0

)
, (14)

Moreover, the other elements of s vector, i.e. si+1 (i =
1, · · · ,M − 1) can be expressed as

p(si+1) ≈

{
(1− p10)N

(
0, σ2

0

)
+ p10N

(
1, σ2

0

)
, si = 0,

p01N
(
0, σ2

0

)
+ (1− p01)N

(
1, σ2

0

)
, si = 1.

(15)
In order to find the global maximum of (13) we decrease the
variance σ2

0 in each iteration of the algorithm gradually, which
averts the local maximum of (13). To calculate the log poste-
rior L (s) in (13), we calculate the prior probability p(s) and
the likelihood p

(
y | s, θ̂

)
which are given as

p (s) = p (s1)

M−1∏
i=1

p (si+1 | si)

∝ p exp

(
−s21
2σ2

0

)
+ (1− p) exp

(
− (s1 − 1)

2

2σ2
0

)

×
M−1∏
i=1

{
[p01 + (1− p10)] exp

(−s2i+1

2σ2
0

)

+ [p10 + (1− p01)] exp

(
− (si+1 − 1)

2

2σ2
0

)}
,

(16)

p
(
y | s, θ̂

)
=

1(√
2πσ2

n

)M exp

−

∥∥∥y −Ψθ̂
∥∥∥2
2

2σ2
n

 (17)

where Ψ = ΦS. Hence, the log posterior L (s) in the M-step
is simplified as

L(s) ∝ log (p (s1))+

M−1∑
i=1

log(p (si+1 | si))−

∥∥∥y −Ψθ̂
∥∥∥2
2

2σ2
n

.

(18)
The first derivative of (18) can be written as

∂L(s)
∂s

∝ ∂

∂s
log (p (s1)) +

∂

∂s

M−1∑
i=1

log(p (si+1 | si))

− 1

2σ2
n

∂

∂s
(y −ΦSθ̂)T (y −ΦSθ̂).

(19)

Define g(s) , −σ2
0

∂
∂s log (p (s1))−

σ2
0

∂
∂s

M−1∑
i=1

log(p (si+1 | si)) = g1(s) + g2(s) and n (s) ,

(y − ΦSθ̂)T (y − ΦSθ̂). Then, the two scalar functions
g1 (s1) and g2 (si+1) (i = 1, 2, · · · ,M − 1) can be given
as

g1(s1) =
ps1e

(
−s21
2σ2

0
)
+ (1− p)(s1 − 1)e

(
−(s1−1)2

2σ2
0

)

pe
(
−s21
2σ2

0
)
+ (1− p)e

(
−(s1−1)2

2σ2
0

)
,

g2(si+1) =
q1si+1e

(
−s2i+1

2σ2
0

)
+ q2(si+1 − 1)e

(
−(si+1−1)2

2σ2
0

)

q1e
(
−s2

i+1

2σ2
0

)
+ q2e

(
−(si+1−1)2

2σ2
0

)

where q1 = p01 + (1− p10), q2 = p10 + (1− p01) and ex =
exp(x). It can be shown that (see the complete proof in [14])

∂n(s)

∂s
= 2 · diag(ΦTΦSθ̂ −ΦTy) · θ̂. (20)

Therefore using (20), (19), and the definitions of g(s) and
n (s), the expression for obtaining the sequence of optimal so-
lution of (13) using steepest-ascent method (s(k+1) = s(k) +

µ∂L(s)
∂s

∣∣∣
s=s(k)

) can be given as

s(k+1) = s(k) +
µ

σ2
0

g(s)+
µ

σ2
n

diag(ΦT (Ψθ̂−y)) · θ̂. (21)

Note that in the computation we decrease σ0 in the consecu-
tive iterations to guarantee the global maxima of (13). Hence,
for each iteration we have σ(i+1)

0 = ασ
(i)
0 , where α is selected

in the range [0.6, 1]. If the columns of Φ are normalized to
have unit norms, the range for step size µ can be expressed as

0 < µ <
2

1
σ2
0
+ MM∗2

σ2
n

(22)
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where M∗ = σθQ
−1( 1−

M√0.99
2 ) and Q−1(·) is the inverse

Gaussian Q-function.
We initialize the proposed Block-IBA with the minimum

ℓ2-norm solution and we use a decreasing threshold (Th) to
activate the sparse samples of the signal w. The value of
Th specifies the number of nonzero elements in s vector.
To obtain an estimate of σθ, the method of moments esti-
mator is appealing. We assume that the Φ matrix has the
columns with the unit norms and its elements have a uni-
form distribution between [-1,1]. From (1), we know that
yj =

∑M
i=1 φjiwi+nj , and by neglecting the noise power we

have E
(
y2j
)
= ME

(
φ2
ji

)
E
(
w2

i

)
. Moreover, we know that∑N

j=1 φ
2
ji = 1, hence E

(
φ2
ji

)
= 1/N . Finally, as E(w2

i ) =

(1− p)σ2
θ , we can obtain a simple update for σθ as

σ̂θ =

√
NE(y2j )
M(1− p̂)

. (23)

we can also express the following update equations for the
rest of parameters

σ̂n =
∥y −Φŵ∥2√

N
, (24)

p̂ =
∥s∥0
M

, (25)

p̂01 =

∑M−1
i=1 si (1− si+1)∑M−1

i=1 si
. (26)

4. EMPIRICAL EVALUATION

This section presents the experimental result to demonstrate
the performance of the Block-IBA. The experiment is con-
ducted for 400 independent simulation runs. In each sim-
ulation run the elements of the matrix Φ are chosen from
a uniform distribution in [-1,1] with columns normalized
to unit ℓ2-norm. The size of the matrix is N = 192 and
M = 512. Block-sparse sources wgen are synthetically
generated using BGHMM in (7) with parameters p = 0.9
and σθ = 1. The measurement vector y is constructed by
y = Φwgen + n where n is zero-mean Gaussian noise
with a variance tuned to a specified value of SNR which
is SNR (dB) , 20 log10

(
∥Φwgen∥2 / ∥n∥2

)
. We set

SNR = 15dB, α = 0.98, and µ = 10−7.
The Normalized Mean Square Error (NMSE) NMSE ,

∥ŵ−wgen∥2
2

∥wgen∥2
2

is used as a performance metric where ŵ is
the estimate of the true signal wgen. We compare the pro-
posed Block-IBA with some recently developed algorithms
for block sparse signal reconstruction, such as the block
sparse Bayesian learning algorithm (BSBL) [12], the ex-
panded block sparse Bayesian learning algorithm (EBSBL)
[12], the Boltzman machine-based greedy pursuit algorithm

(BM-MAP-OMP) [11], the cluster-structured MCMC algo-
rithm (CluSS-MCMC) [10], and the pattern-coupled sparse
Bayesian learning algorithm (PC-SBL) [13]. Recall from
Section 2 that the block size and the number of blocks of
w are proportional to 1/p01. That is, when p01 is small w
comprises small number of blocks with big sizes and vice
versa. Hence, we vary the value of p01 between 0.09 and
0.9 to obtain the NMSE for various algorithms. The results
of NMSE versus p01 is shown in Fig. 1. Two observations
can be made from Fig. 1. First, the Block-IBA with Gamma
distribution as hyperprior over hyperparameter γ (denoted as
Gamma-Block-IBA) outperforms the Block-IBA with MMSE
estimation (denoted as Block-IBA). Second, for p01 ≥ 0.36
Gamma-Block-IBA outperforms all other algorithms. This
is because for p01 ≥ 0.36 the samples of s vector inside
each block follow the first-order Markov chain process more
accurately and they tend to be more non-i.i.d.

0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9
10

−2

10
−1

10
0

p
01

N
M

S
E

 

 

Gamma−Block−IBA

Block−IBA

EBSBL−BO

BSBL−EM

BM−MAP−OMP

PC−SBL

CluSS−MCMC

Fig. 1. NMSE versus p01 for the Block-IBA and other algo-
rithms. The results are averaged over 400 trials.

5. CONCLUSION

In this paper, we have developed a novel Block-IBA using
an iterative expectation-maximization (EM) algorithm to re-
cover the block-sparse signal whose structure of block spar-
sity is completely unknown. Unlike the other existing algo-
rithms we have modeled the cluster pattern of the signal using
Bernoulli-Gaussian hidden Markov model (BGHMM) which
is a more realistic model in practical applications. We have
optimized the M-step of the EM algorithm with the steepest-
ascent method. Experimental results show that the Block-IBA
outperforms other existing algorithms (for block sparse sig-
nal reconstruction) when the block-sparse signal comprises a
large number of blocks with short lengths.

2177



6. REFERENCES

[1] M. Mishali and Y. C. Eldar, “Blind multiband signal re-
construction: Compressed sensing for analog signals,”
Signal Processing, IEEE Transactions on, vol. 57, no. 3,
pp. 993–1009, 2009.

[2] R. Gribonval and E. Bacry, “Harmonic decomposition
of audio signals with matching pursuit,” Signal Process-
ing, IEEE Transactions on, vol. 51, no. 1, pp. 101–111,
2003.

[3] M. F. Duarte and Y. C. Eldar, “Structured compressed
sensing: From theory to applications,” Signal Process-
ing, IEEE Transactions on, vol. 59, no. 9, pp. 4053–
4085, 2011.

[4] Z. Zhilin and B. D. Rao, “Sparse signal recovery
with temporally correlated source vectors using sparse
bayesian learning,” Selected Topics in Signal Process-
ing, IEEE Journal of, vol. 5, no. 5, pp. 912–926, 2011.

[5] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-
sparse signals: Uncertainty relations and efficient recov-
ery,” Signal Processing, IEEE Transactions on, vol. 58,
no. 6, pp. 3042–3054, 2010.

[6] Y. C. Eldar and M. Mishali, “Robust recovery of signals
from a structured union of subspaces,” Information The-
ory, IEEE Transactions on, vol. 55, no. 11, pp. 5302–
5316, 2009.

[7] M. Yuan and Y. Lin, “Model selection and estimation
in regression with grouped variables,” Journal of the
Royal Statistical Society. Series B: Statistical Method-
ology, vol. 68, no. 1, pp. 49–67, 2006.

[8] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde,
“Model-based compressive sensing,” Information The-
ory, IEEE Transactions on, vol. 56, no. 4, pp. 1982–
2001, 2010.

[9] M. Zimmermann and K. Dostert, “Analysis and model-
ing of impulsive noise in broad-band powerline commu-
nications,” Electromagnetic Compatibility, IEEE Trans-
actions on, vol. 44, no. 1, pp. 249–258, 2002.

[10] L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian
compressive sensing for cluster structured sparse sig-
nals,” Signal Processing, vol. 92, no. 1, pp. 259–269,
2012.

[11] T. Peleg, Y. C. Eldar, and M. Elad, “Exploiting statistical
dependencies in sparse representations for signal recov-
ery,” Signal Processing, IEEE Transactions on, vol. 60,
no. 5, pp. 2286–2303, 2012.

[12] Z. Zhang and B. D. Rao, “Extension of SBL algorithms
for the recovery of block sparse signals with intra-block
correlation,” Signal Processing, IEEE Transactions on,
vol. 61, no. 8, pp. 2009–2015, 2013.

[13] S. Yanning, D. Huiping, F. Jun, and L. Hongbin,
“Pattern-coupled sparse bayesian learning for recov-
ery of block-sparse signals,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International
Conference on, pp. 1896–1900.

[14] H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “An iter-
ative bayesian algorithm for sparse component analysis
in presence of noise,” Signal Processing, IEEE Transac-
tions on, vol. 57, no. 11, pp. 4378–4390, 2009.

[15] J. Ziniel and P. Schniter, “Dynamic compressive sensing
of time-varying signals via approximate message pass-
ing,” Signal Processing, IEEE Transactions on, vol. 61,
no. 21, pp. 5270–5284, 2013.

[16] H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “Bayesian
Pursuit algorithm for sparse representation,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2009
IEEE International Conference on, pp. 1549-1552.

[17] M. E. Tipping, “Sparse bayesian learning and the rel-
evance vector machine,” Journal of Machine Learning
Research, vol. 1, no. 3, pp. 211–244, 2001.

2178


