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ABSTRACT
In this paper, we propose a low-rank tensor deconvolution problem
which seeks multiway replicative patterns and corresponding activat-
ing tensors of rank-1. An alternating least squares (ALS) algorithm
has been derived for the model to sequentially update loading com-
ponents and the patterns. In addition, together with a good initialisa-
tion method using tensor diagonalization, the update rules have been
implemented with a low cost using fast inversion of block Toeplitz
matrices as well as an efficient update strategy. Experiments show
that the proposed model and the algorithm are promising in feature
extraction and clustering.

Index Terms— tensor decomposition, tensor deconvolution, tensor
diagonalization, CANDECOMP/PARAFAC

1. INTRODUCTION

Tensor decomposition especially the CANDECOMP/PARAFAC
tensor decomposition (CPD) has found a wide range of
applications in variety of areas such as in chemometrics,
telecommunication, data mining, neuroscience, blind source
separation [1–4]. One of important applications of CPD is to
extract hidden loading components which can provide phys-
ical insight of the source data. In order to deal with shifting
factors in sequential data such as time series or spectra data,
Harshman et. al [5] proposed the shifted CPD. The model
has been applied to inspecting neural activity [6]. FitzGerald
et al. extended the shift model to nonnegative tensor fac-
torisation and applied it to music separation [7]. Cemgil et
al. [8] introduced a probabilistic framework for non-negative
factor deconvolution for audio modeling. Some other existing
shifting models have been considered in nonnegative matrix
factorisation (NMF) such as the convolutive NMF [9–11],
two way CNMF, or multichannel NMF [12,13]. In this paper,
we consider a novel tensor deconvolution problem whose ma-
jor aim is to represent multiway data by replicative patterns
and activating maps following a convolutive model, that is

Y ≈H1 ∗M1 + · · · +HR ∗MR (1)

where “∗′′ denotes the tensor convolution, Y is of size
I1 × I2 × I3, Hr and Mr are tensors of size Jr1 × Jr2 × Jr3,
and Kr1 × Kr2 × Kr3 with Jrn + Krn − 1 = In, 1 ≤ Jrn ≤ In,
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Fig. 1. (a) Illustration of CANDECOMP/PARAFAC (CPD)
as a tool to extract rank-1 patterns from multiway data Y, and
(b) low rank tensor deconvolution which represents the data
by small patches Hr and maps Mr, which are rank-1 tensors.

respectively. Although the roles of Hr and Mr are inter-
changeable because of commutativity of the convolution, we
often consider patterns of relatively small sizes and Kn ≥ Jn.
More specifically, we consider a rank constrained model of
(1) in which Mr are rank-1 tensors, for r = 1, . . . ,R, i.e.,
Mr = ar ◦ br ◦ cr, where ar ∈ RKr1 , br ∈ RKr2 and cr ∈ RKr3

are vectors of unit length, and “◦” represents the outer prod-
uct. The low rank tensor deconvolution in (1) is rewritten as

Y ≈H1 ∗ (a1 ◦ b1 ◦ c1) + · · · +HR ∗ (aR ◦ bR ◦ cR) (2)
and illustrated in Fig. 1.

When data is a matrix, i.e., I3 = 1, the tensor deconvo-
lution becomes rank-1 blind matrix deconvolution proposed
in [14]. In a particular case, when patterns Hr all are scalar,
i.e., Jr1 = Jr2 = Jr3 = 1, the tensor deconvolution with R
patterns simplifies into the rank-R CP tensor decomposition.
In general cases, we will show that this tensor deconvolution
can be expressed as the rank-(J1, J2, J3) block tensor decom-
position [15] with Toeplitz factor matrices.

For simplicity, patterns Hr are supposed to be the same
size, i.e., Jr1 = J1, Jr2 = J2 and Jr3 = J3 for r = 1, . . . ,R. It
follows that loading components are also of the same length,
i.e., Kr1 = K1, Kr2 = K2, Kr3 = K3 for r = 1, . . . ,R. In the
following section, we will derive an ALS algorithm which
sequentially updates loading components ar, br, cr and the
tensorsHr. Application of the model is then demonstrated for
feature extraction and clustering of the hand-written digits.
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2. ALGORITHM

We define a linear operator X = τJ(x) which maps a vector
x of length K to a lower triangular Toeplitz matrix X of size
I × J, I = K + J − 1 whose first column is [xT , 0, . . . , 0]T

X = τJ(x) , vec(X) = TK,J x (3)
where TK,J = [IK , 0K×J , . . . , IK , 0K×J , IK]T of size (K + J −
1)J × K comprises only ones and zeros. The tensor decom-
position in (2) can be expressed as

Y ≈
R∑

r=1

Hr ×1 Ar ×2 Br ×3 Cr, (4)

where “×′′n denotes product between a tensor and a matrix
along mode-n, Ar = τJ1 (ar), Br = τJ2 (br), Cr = τJr3 (cr) are
Toeplitz matrices of size I1×J1, I2×J2 and I3×J3, respectively.

2.1. Update of loading components ar

In order to solve the problem (4), we minimise the following
cost function

min D =
1
2
‖Y −

R∑
r=1

Hr ×1 Ar ×2 Br ×3 Cr‖2F . (5)

We denote by Y(1) the mode-1 matricization of Y. The ap-
proximation in (4) can be rewritten in matrix form as

Y(1) ≈
R∑

r=1

Ar H(r)
(1) (Cr ⊗ Br)T , (6)

where “⊗′′ denotes the Kronecker product, and H(r)
(1) are mode-

1 matricizations of the tensors Hr for r = 1, . . . ,R. The cost
function in (5) is therefore expressed in an equivalent form

D =
1
2
‖ vec
(
Y(1)
) −

R∑
r=1

(
(Cr ⊗ Br)

(
H(r)

(1)

)T ⊗ II1

)
TK1,J1 ar‖2F ,

whereas its gradients with respect to ar for r = 1, 2, . . . ,R are
given by

∂D
∂ar
= −wr +

R∑
s=1

Φr,s as , (7)

where vectors wr of length K1, and matrices Φr,s of size
K1 × K1 are defined as

wr = TT
K1,J1

(
H(r)

(1) (Cr ⊗ Br)T ⊗ II1

)
vec(Y)

= TT
K1,J1

vec
(
〈Y ×2 BT

r ×3 CT
r ,Hr〉−1

)
, (8)

Φr,s = TT
K1,J1

(
Zr,s ⊗ II1

)
TK1 ,J1 , (9)

Zr,s = H(r)
(1)

(
CT

r Cs ⊗ BT
r Bs

) (
H(s)

(1)

)T

= 〈Hr ×2 BT
s Br ×3 CT

s Cr,Hs〉−1 . (10)

The notation 〈X,Y〉−1 = X(1)YT
(1) denotes contraction be-

tween two tensors along all modes but mode-1. Entries
of vectors wr are simply sums of entries on the main di-
agonal or on the k-sub diagonal of the (I1 × J1) matrices
Wr = 〈Y ×2 BT

r ×3 CT
r ,Hr〉−1 for k = −1, . . .− K1 + 1, that is

wr(k) =Wr(k, 1) +Wr(k + 1, 2) + . . . +Wr(k + J1 − 1, J1) ,
for k = 1, . . . ,K1. In addition, the matrices Zr,s of size J1 × J1
are efficiently computed through contraction along all modes

but mode-1 between two tensors Hr ×2 BT
s Br ×3 CT

s Cr and
Hs of size J1 × J2 × J3.

We define φ(r,s)
j and φ(r,s)

− j sums of all entries on the j-th
super diagonal or j-th sub diagonal of the (J1 × J1) matrices
Zr,s, for j = 0, . . . , J1 − 1, that is

φ(r,s)
j = z(r,s)

1, j+1 + z(r,s)
2, j+2 + · · · + z(r,s)

J1− j,J1
, (11)

φ(r,s)
− j = z(r,s)

j+1,1 + z(r,s)
j+2,2 + · · · + z(r,s)

J1,J1− j . (12)

From definition of the matrices TK1,J1 , we obtain that Φr,s in
(9) are banded Toeplitz matrices of size K1 × K1 given as

Φr,s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(r,s)
0 φ(r,s)

1 . . . φ(r,s)
J1−1

φ(r,s)
−1 φ(r,s)

0
. . .

. . .
...

. . .
. . .

φ(r,s)
−J1+1

. . .

. . . φ(r,s)
J1−1
...

. . .
. . . φ(r,s)

1
φ(r,s)
−J1+1 . . . φ

(r,s)
−1 φ(r,s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By setting the gradients in (7) with respect to all ar to ze-
ros, we derive the following update rule for a =

[
aT

1 , . . . , a
T
R

]T
a← Φ−1 w, (13)

where w =
[
wT

1 , . . . ,w
T
R

]T
is a vector of length K1R , and

Φ = [Φr,s] is an R × R partitioned matrix of Toeplitz matri-
ces Φr,s for 1 ≤ r, s ≤ R. Since Zr,s = ZT

s,r, Φr,s = Φ
T
s,r and

Φr,r are symmetric. It follows thatΦ is a symmetric matrix of
size (RK1 × RK1). We will show that Φ can be expressed as
a block Toeplitz matrix after swapping its row and columns,
and thereby its inversion in (13) can be efficiently performed
using fast inversion methods, e.g., the block Levinson recur-
sion algorithm [16], or the algorithm in [17].

We define a permutation matrix PK1,R such that vec
(
XT

K1,R

)
=

PK1,R vec
(
XK1,R

)
for any matrix XK1,R of size K1 × R. It can

be verified that permutation of columns and rows of Φ using
PK1,R yields a block Toeplitz matrix of (R × R) matrices Φ̃− j

and Φ̃ j = Φ̃
T
− j for j = 0, 1, . . . , J1 − 1 given as

Φ̃ = PK1,RΦPT
K1,R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃0 . . . Φ̃J1−1
...

. . .
. . .

Φ̃−J1+1
. . .

. . . Φ̃J1−1
. . .

. . .
...

Φ̃−J1+1 . . . Φ̃0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Φ̃ j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(1,1)
j φ(1,2)

j . . . φ(1,R)
j

φ(2,1)
j φ(2,2)

j . . . φ(2,R)
j

...
...
. . .

...

φ(R,1)
j φ(R,2)

j . . . φ(R,R)
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)
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and φ(r,s)
j are defined in (11) and (12). Using the above ex-

pression, the update rule in (13) is rewritten as

a← PT
K1,R

(
PK1,RΦPT

K1,R

)−1 (
PK1,R w

)
= PT

K1,R

(
Φ̃
−1 w̃
)
. (15)

This update rule requires a cost of O(K2
1 R2) and needs only J1

matrices Φ̃ j of size R × R, i.e., J1R2 coefficients [16, 18].
In a particular case when J1 = 1, the update rule (15) can

be simplified into a simple form given as
[a1, . . . , aR]← [w1, . . . ,wR] Z−1 , (16)

where Z is a matrix of size (R × R) whose entries Z(r, s) are
given in (10). Loading components br and cr are updated in
the similar way.

2.2. Update of core tensors Hr

In order to derive update rules for Hr, we compute derivatives
of the cost function in (5) with respect to Hr. The derivatives
are set to zero to obtain the following update rule⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(H1)
...

vec(HR)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ψ1,1 . . . Ψ1,R
...

. . .
...

ΨR,1 . . . ΨR,R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vec(V1)
...

vec(VR)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (17)

whereVr = Y×1AT
r ×2BT

r ×r CT
r are tensors of size J1×J2×J3,

andΨr,s = (CT
r Cs)⊗ (BT

r Bs)⊗ (AT
r As). The partitioned matrix

Ψ = [Ψr,s] in (17) is of size R(J1J2 J3)×R(J1J2J3). In practice,
we often seek relatively small patterns Hr, the inversion Ψ−1

can be proceeded quickly.

2.3. Initialization and efficient implementation

For the noise-less case, we use the tensor diagonalization (TE-
DIA) [19] to seek for matrices which transform the data ten-
sor Y to be diagonal or block diagonal form. Loading com-
ponents ar , br and cr are then estimated using the Toeplitz
matrix factorization [20]. For other cases, TEDIA is used to
generate initial points for the deconvolution. The procedure
is explained in more detail in the next section.

In update rules in (15) and (17), besides the cost due to
solving linear systems, construction of vectors wr in (8) and
tensorsVr in (17) is expense with a cost ofO(I1I2I3 min(J2, J3)).
The computations are significantly time-consuming when the
tensor sizes are large, because of large memory operations
associated with tensor permutations [21]. Taking into account
that the tensor product Fr = Y ×2 BT

r ×3 CT
r is the common

part involving in construction of Vr and ww. After updating
ar, the tensors Vr are computed quickly as Vr = Fr ×1 Ar.
Therefore we suggest to update patterns Hr after each update
of loading components ar, br and cr. The update order is as
follows: update [ar], update [Hr], update [br], update [Hr],
update [cr], update [Hr], and so on.

Finally, a direct evaluation of the cost function (5) as a
stopping criterion can be the most expensive step. Since we
complete each iteration by updating Hr using (17), the cost
value (5) is simply computed without construction of the ap-
proximate tensor to Y as

Table 1. Clustering accuracy (%) using the low rank tensor
deconvolution with rank R = 2. The values inside parentheses
indicate the percentage of improvement of tensor deconvolu-
tion compared to the approach based on rank-2 CPD.

Digits 1 2 3 4 5 6 7 8 9

0 98.5 90.5
(4)

94.5
(2)

94.5
(3.5)

84.5 90
(3)

98
(9)

97.5
(3.5)

91
(1)

1 89.5
(39)

92.5
(40.5)

97.5
(5)

83
(6)

95 92.5
(15)

86.5
(33.5)

94.5
(23)

2 89.5 92 84.5 91
(27)

89.5
(4.5)

72.5
(20.5)

87
(4.5)

3 98
(9)

67
(3.5)

97
(5.5)

94
(4.5)

81
(28.5)

89.5
(5)

4 87
(5)

91
(20.5)

93.5
(36.5)

95.5 67

5 65
(1.5)

92.5
(10.5)

67.5
(8.5)

58.5

6 94.5 96
(2)

96
(4)

7 93.5
(23)

69
(17.5)

8 78
(13)

D =
1
2

⎛⎜⎜⎜⎜⎜⎝‖Y‖2F −
R∑

r=1

vec(Vr)T vec(Hr)

⎞⎟⎟⎟⎟⎟⎠ . (18)

3. APPLICATIONS TO FEATURE EXTRACTION

This section introduces an application of tensor decon-
volution to feature extraction. Assuming that slides Yk

for k = 1, . . . , I3 represent samples of certain entity, e.g.,
two-dimensional images. Then the third loading compo-
nents c1, . . . , cR explain relation between I3 samples. In
a particular case when J3 = 1, i.e., patterns are matri-
ces of size J1 × J2, vectors cr, for r = 1, . . . ,R, repre-
sent R feature vectors associated with R basis components
Hr ∗ (ar bT

r ) = τJ1 (ar) Hr τJ2 (br)T of rank min(J1, J2), respec-
tively. It is worth noting that CPD with rank-R also yields R
feature vectors. However, its R basis components are only of
rank-1, and do not explain complex structure as those in the
tensor deconvolution.

We illustrate the tensor deconvolution in clustering ap-
plications on the MNIST handwritten digits1. We took the
first 100 images of size 24 × 24 for each digit, and applied
the tensor deconvolution to the data consisting of 200 images
for each pair of digits, e.g., 0 and 1, 2 and 4. So far, there
does not exist a method to determine the number of patterns,
i.e. R, which is related to rank determination in the block
tensor decomposition. However, one can select a suitable R
by balancing the approximation error versus the number of
parameters [3], or through a cross-validation technique. In
this paper, the deconvolution estimated two common patterns
H1 and H2 of size J × J × 1, where J varied in the range of
[1, 10]

Y ≈
R∑

r=1

Hr ∗ (ar ◦ br ◦ cr) =
R∑

r=1

(Hr ∗ (ar ◦ br)) ◦ cr . (19)

1http://yann.lecun.com/exdb/mnist/
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(b) Digits 2 and 6
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(c) Digits 4 and 7

Fig. 2. Illustration of tensor deconvolution with two patterns of size J × J × 1 for clustering of two digits 1 and 3, 2 and 6, 4
and 7. Relative approximation errors and clustering accuracies are obtained with pattern sizes J = 1, 2, . . . , 10.

(a) CPD with J = 1, R = 2.

(b) Tensor deconvolution with J = 8 and R = 2

Fig. 3. Approximate images for two digits 1 and 3 using only
two patterns when J = 1 and J = 8.

Parameters were initialised using the TEDIA algorithm (in-
cluding the Tucker compression [22,23]) for two-sided block-
diagonalization of the compressed tensor of size RJ×RJ×200.
The two unconstrained factor matrices Aunc

r and Bunc
r obtained

by TEDIA were then factorised to yield the Toeplitz matrices
τJ(ar) and τJ(br) [20]. The initial patterns Hr were estimated
such that they minimized the Frobenius norm ‖Y−∑R

r=1 Hr×1
τJ(ar) ×2 τJ(br)‖2F , with fixed ar and br. Finally, we com-
pleted the initialisation by performing best rank-1 approxi-
mations to mode-3 matricization of Hr, i.e., approximations
Hr ≈ Hr ◦ cr for r = 1, . . . ,R.

In Fig. 2, the relative approximation errors and clustering
accuracies using K-means are illustrated as functions of size
J for pairs 1 and 3, 2 and 6, 4 and 7. The results for CPD
with rank-2 are shown with J = 1. For these selected pairs

(a) Digits 1 and 3 (b) Digits 2 and 6 (c) Digits 4 and 7

Fig. 4. Illustration of two basis images extracted for digits 1
and 3, 2 and 6, 4 and 7 using rank-2 CPD and tensor decon-
volution with R = 2 and J1 = J2 = J, J3 = 1.

of digits, we did not achieve good clustering accuracies using
two features extracted by CPD. However, as seen on Fig. 2,
when J = 8, 9 and 10 for digits 1 and 3, digits 2 and 6, and
J = 5 for digits 4 and 7, we obtained much better clustering
accuracies (≥ 92.5%) using only two features estimated by
the tensor deconvolution. The high performance of the tensor
deconvolution can be explained by complex structure of basis
images Fr = Hr ∗ (ar bT

r ) illustrated in Fig. 4. Basis images of
rank-1 by CPD, i.e., ar bT

r , do not express sufficient structure
of digits. With the more complex basis images, tensor de-
convolution achieved lower approximation errors, which are
confirmed in both Fig. 2 and Fig. 3. It is clear that in Fig. 3, re-
constructed digits 1 and 3 could not be distinguished by rank-
2 CPD as compared with those by tensor deconvolution. The
improvement was also observed in clustering of other digits
as summarised in Table 1.

4. CONCLUSIONS

The tensor deconvolution with rank-1 structures considered in
this paper has shown advantage over the CP decomposition in
providing complex structure basis patterns. The tensor decon-
volution explains the data better than CPD, while keeping the
same number of features R. With efficient implementation of
update rules, initialisation and update strategy, our model and
the proposed algorithm can be applied to feature extraction
for other kinds of data. Matlab implementation is provided in
the TENSORBOX package, and available online at: http:
//www.bsp.brain.riken.jp/˜phan/tensorbox.php.
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