
A COMPARISON OF EXTREME LEARNING MACHINES AND
BACK-PROPAGATION TRAINED FEED-FORWARD NETWORKS

PROCESSING THE MNIST DATABASE

Philip de Chazal1,2, Jonathan Tapson2, and André van Schaik2

1University of Sydney, School of Electrical and Information Engineering, Australia
2University of Western Sydney, MARCS Institute, Australia

ABSTRACT

This paper compares the classification performance and
training times of feed-forward neural networks with one
hidden layer trained with the two network weight optimisa-
tion methods. The first weight optimisation method used the
extreme learning machine (ELM) algorithm. The second
weight optimisation method used the back-propagation (BP)
algorithm. Using identical network topologies the two
weight optimization methods were directly compared using
the MNIST handwritten digit recognition database. Our
results show that, while the ELM weight optimization meth-
od was much faster to train for a given network topology, a
much larger number of hidden units were required to pro-
vide a comparable performance level to the BP algorithm.
When the extra computation due to larger number of hidden
units was taken in to account for the ELM network, the
computation times of the two methods to achieve a similar
performance level was not so different.

Index Terms— Extreme Learning Machine, Back-
propagation, Multilayer feed-forward network, MNIST
database.

1. INTRODUCTION

Feed-forward neural networks using random weights were
first suggested by Schmidt et al. in 1992 [1] but were not a
widely used method until Huang et al. popularised them as
Extreme Learning Machines (ELM) [2,3] in 2005. The
ELM is a multi-layer feed-forward neural network topology
and algorithm that offers fast training and flexible non-
linearity for function regression and classification tasks. Its
principal benefit is that the network parameters are calculat-
ed in a single pass during the training process, which offers
a significant improvement in implementation time over
conventional back-propagation-trained feed-forward net-
works. In its standard form it has an input layer that is fully
connected to a hidden layer with conventional non-linear
activation functions. The hidden layer is fully connected to

an output layer with linear activation functions. The number
of hidden units is often much greater than the input layer
with a fan-out of 5 to 20 hidden units per input element
frequently used. A key feature of ELMs is that the weights
connecting the input layer to the hidden layer are set to ran-
dom values, usually uniformly distributed in some prede-
fined range. This simplifies the requirements for training to
one of determining the hidden to output unit weights, which
can be achieved in a single pass. By randomly projecting the
inputs to a much higher dimensionality, it is possible for the
algorithm to find a hyperplane which approximates a desired
regression function, or represents a linear separable classifi-
cation problem [4].

A common way of calculating the hidden to output
weights is to use the Moore-Penrose pseudo-inverse [5]
applied to the hidden layer outputs using labelled training
data, or some regularized version of the pseudo-inverse [6].

In this paper we compare the classification performance
and training times of ELM classifiers and back-propagation
trained networks with identical network topology processing
the MNIST database.

2. MNIST DATABASE

The MNIST handwritten digit recognition database was
used throughout this study [7][8]. The database has 60,000
training and 10,000 testing examples. Each example is a
28*28 pixel 256 level grayscale image of a handwritten digit
between 0 and 9. The 10 classes are approximately equally
distributed in the training and testing sets.

We performed no preprocessing of the data and use 784
pixels values for each image as our network inputs.

3. DATA PROCESSING

If we consider a particular sample of input data 1L

k
×∈x 

where k is a series index and K is the length of the series,
then the forward propagation of the local signals through a
fully connected network with one hidden layer can be de-
scribed by:

2165978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

(2) (1)
, ,

1 1

M L

n k nm ml l k
m l

y w g w x
= =

 =  
 

∑ ∑ (1)

Where 1N
k

×∈y  is the output vector corresponding to
the input vector kx , l and L are the input layer index and
number of input features respectively, m and M are the
hidden layer index and number of hidden units respectively,
and n and N are the output layer index and number of out-
put units respectively. (1)w and (2)w are the weights associ-
ated with the input to hidden layer and the hidden to output
layer linear sums respectively. ()g is the hidden layer
non-linear activation function. The output layer activation is
a linear function.

3.1 Extreme Learning Machines

With ELM, (1)w are assigned randomly which simplifies
the training requirements to task of optimisation of the (2)w
only. The choice of linear output neurons further simplifies
the optimisation problem of (2)w to a single pass algorithm.
The weight optimisation problem for (2)w can be stated as

 (2)
, ,

1

M

n k nm m k
m

y w a
=

= ∑ where (1)
, ,

1

L

m k ml l k
l

a g w x
=

 =  
 
∑ (2)

We can restate this as matrix equation by using
()2 N M×∈W  with elements (2)

nmw , and M K×∈A  in which
each column contains outputs of the hidden unit at one in-
stant in the series 1M

k
×∈a  , and the output N K×∈Y 

where each column contains output of the network at one
instance in the series as follows:

()2=Y W A . (3)
The optimisation problem involves determining the ma-

trix ()2W given a series of desired outputs for Y and a
series of hidden layer outputs A .

We represent the desired outputs for ky using the target
vectors 1N

k
×∈t  where ,n kt has value 1 in the row corre-

sponding to the desired class and 0 for the other N-1 ele-
ments. For example []0,1,0,0 T

k =t indicates the desired
target is class 2 (of four classes). As above we can restate
the desired targets using a matrix N K×∈T  where each
column contains the desired targets of the network at one
instance in the series. Substituting T in for the desired
outputs for Y , the optimisation problem involves solving
the following linear equation for W :

()2=T W A . (4)
In ELM literature W is often determined by the taking

the Moore-Penrose pseudo-inverse K M+ ×∈A  of A [3]. If
the rows of are A are linearly independent (which normally
true if K>M) then ()2W maybe calculated using

 ()2 +=W TA where ()-1T T+ =A A AA

i.e . () ()-12 T T=W TA AA (5)
This minimises the sum of square error between net-

works outputs Y and the desired outputs T , i.e. +A mini-
mizes

()2
, ,2

1 1

K N

n k n k
k n

y t
= =

− = −∑∑Y T (6)

We refer to networks trained with above algorithm as

ELM networks.

3.2 Back-propagation trained Feed-forward Network

The second method to determine the network parameters

was to minimise the network error by iteratively back-
propagating the gradient of the error with respect the net-
work weights and using a numerical optimisation algorithm
to reduce the network error. As the output stage of our net-
work was linear we only required to iteratively calculate the
input to hidden layer weights. The hidden to output weights
could be calculated at each iteration using equation 5 of the
ELM classifier.

For a fully connected network, a sum of square error
function and tanh activation functions for the hidden units,
the gradient of the error E with respect the input to hidden

network weights (1)
ml

E
w
∂
∂

is given by [7]:

() () ()22
m, , , ,(1)

1 1

1 1
K N

k n k n k nm l k
k nml

E a y t w x
w K = =

∂  = − − ∂  
∑ ∑ (7)

Using matrices as defined in section 3.1 and the matrix

L K×∈X  in which each column contains inputs 1L
k

×∈x  at
one instant in the series, equation 7 can be restated in matrix
form as

() () ()()()2
(1)

1 T TE
K

∂
= − × × −

∂
1 A A W Y T X

W
 (8)

where × is an element-by-element multiplication opera-
tor.

Having calculated (1)

E∂
∂W

, a gradient descent algorithm

is used to update the input to hidden layer weights using
(1) (1)

(1)

Eλ ∂
= −

∂
W W

W
 (9)

where λ is the learning rate parameter. We refer to net-
works trained with above algorithm as BP networks

2166

4. EXPERIMENTS

We applied the ELM and BP weight calculation methods to
the MNIST data. Both the ELM and BP algorithms were
applied directly to the unprocessed images and we trained
the networks by providing all data in batch mode. The ran-
dom values for the input layer weights were uniformly dis-

tributed between -0.5 and 0.5 after scaling the pixel data so
that the minimum value was 0 and maximum value was 1.
The tanh function was used as the hidden layer activation
function. In order to perform a direct comparison of the two
methods we used the following protocol:

Fig. 1. The error rate of the ELM and the BP on the MNIST database for fan-out varying between 1 and 20. All results at
each fan-out are averaged from 10 repeats of the experiment.

Table 1. The error rate (%) of the ELM and and the BP networks on the MNIST database. Results averaged from 10
repeats.

 Fan-out
 1 2 3 4 5 6 7 8 9 10 12 15 20

ELM 7.20 5.21 4.32 3.80 3.45 3.20 3.00 2.86 2.74 2.63 2.49 2.31 2.15
BP 2.00 1.89 1.77 1.81

Table 2. Computation times (in seconds). The elapsed time is shown for training the ELM and BP networks on the 60,000
images from MNIST database using MATLAB R2012a code running on 2012 Sony Vaio Z series laptop with an Intel i7-

2640M 2.8GHz processor and 8GB RAM.

 Fan-out

 1 2 3 4 5 6 7 8 9 10 12 20 15 20

ELM 6.2 13.9 24.9 37.8 53.3 68.5 88.2 111 136 162 228 630 339 630

BP 900 2040 7200 72000

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Er
ro

r (
%

)

Fan-out

ELM

BP

2167

For fan-out of 1 to 20 hidden units per input, repeat 10
times

(i) Assign random values to the input layer weights.
(ii) Determine ELM network weights using data from (i).
(iii) Train the BP network weights using data from (i).
(iv) Evaluate both networks on the 10,000 test data ex-

amples and store results.
For the BP network we used a learning rate of 0.01λ =

and stopped training after 100 iterations. Due to the long
training times of the BP networks we evaluated networks for
a fan-out of 1, 2, 5 and 10 only. For the ELM networks we
evaluated at fan-outs of 1 to 10, 12, 15 and 20.

We averaged the results for the 10 repeats of the experi-
ment for each fan-out and compared the misclassification
rates. Both training algorithms were implemented in Matlab
using matrix format.

5. RESULTS AND DISCUSSION

The classification performance results for experiments are
shown in Fig. 1 and Table 1. The computation time is shown
in Table 2. The error rate of the ELM network decreased as
the fan-out value was increased and the trend of the curve in
Fig. 1 suggest that further reduction in the error rate may be
achieved with a fan-out number greater than 20. The highest
error rate was 7.2% at a fan-out of 1 and the minimum error
rate was 2.15% at a fan-out of 20. The error rate of BP net-
works did not vary much with fan-out value. It ranged be-
tween 2.0% at a fan-out of 1 to a minimum of 1.77%.at a
fan-out of 5 with a value.

The error rate of the BP networks outperformed the ELM
networks at every fan-out and, notably, the error rate of the
smallest BP network (fan-out=1) outperformed the best of
the ELM networks (fan-out=20). One of the claimed bene-
fits of the ELM networks is the fast training time. Table 2
shows this to be the case with the training times of the ELM
networks approximately 0.65% of the BP networks for a
given fan-out number. This result was unsurprising given
that we were training the network for 100 iterations. The
training time for a fan-out of 1 BP network was 900 seconds
which was 50% greater than the training time of the fan-out
of 20 ELM network (600 seconds). Given that the BP net-
work at fan-out 1 (error 2.0%) outperformed the ELM net-
work at fan-out 20 (error 2.15%) our results suggest that a
much larger number of hidden units are required by the
ELM network to achieve a similar performance to the BP
network on this database. Given a desired performance lev-
el, the training times of the two networks may not be so
different.

Our results are comparable with the best of the published
results for the MNIST database processing raw pixel values
[4] [11]. We have used a simple gradient descent algorithm
with a fixed learning rate. More sophisticated optimization
algorithms such as adaptive learning rates and the inclusion
of a momentum term would likely improve network training
speeds [9]. These methods would decrease the difference the

computational penalty of the BP algorithm relative to the
ELM algorithm.

6. CONCLUSION

This study has shown that the feed-forward neural networks
networks with one hidden layer trained with the extreme
learning machine and the back-propagation algorithms can
successfully classify the MNIST database. For a desired
performance level the back-propagation network resulted in
a smaller number of hidden units and the computational
training requirements of the two optimisation methods was
not so different.

7. RELATION TO PRIOR WORK

The work presented here has focused on side-by-side com-
parison of two training methods for multilayer feed-forward
networks. The results for the ELM classifiers processing the
MNIST dataset was presented in [8]. All other work is this
publication is original.

8. REFERENCES

1. W.F. Schmidt, M.A. Kraaijveld, and R.P. Duin, “Feed forward
neural networks with random weights”, Proceedings of 11th
IAPR international conference on pattern recognition meth-
odology and systems, pp 1–4, 1992.

2. G.B. Huang, Q.Y. Zhu and C.K. Siew, “Extreme Learning
Machine: Theory and Applications,” Neurocomputing, vol.
70, pp. 489–501, 2006.

3. G. Huang, G.B. Huang, S. Song, and K. You, “Trends in ex-
treme learning machines: A review”, Neural Networks, vol.
61, pp. 32-48, Jan. 2015.

4. J. Tapson and A. van Schaik, “Learning the pseudoinverse so-
lution to network weights,” Neural Networks, vol. 45, pp. 94–
100, Sep. 2013.

5. R. Penrose and J. A. Todd, “On best approximate solutions of
linear matrix equations,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 52, pp 17-19, 1956.

6. B.D. Ripley, Pattern Recognition and Neural Networks, Cam-
bridge Univ. Press, 1996.

7. Y. LeCun and C. Cortes, “The MNIST database of handwrit-
ten digits”, Available at: http://yann.lecun.com/exdb/mnist.

8. Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-
Based Learning Applied to Document Recognition,” Proceed-
ings of the IEEE, vol. 86(11), pp. 2278-2324, Nov. 1998.

9. S. Haykin, “Neural Networks. A comprehensive foundation."
2nd Edition, Prentice Hall, 1998.

10. P. de Chazal, J. Tapson and A. van Schaik, “Learning ELM
network weights using linear discriminant analysis”, Proceed-
ings of ELM-2014 Volume 1, pp 183-191, 2015.

11. http://yann.lecun.com/exdb/mnist/

2168

