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ABSTRACT

The issue of blind Multiple-Input and Multiple-Output (MIMO)
deconvolution of communication system is addressed. Two new
iterative Blind Source Separation (BSS) algorithms are presented,
based on the minimization of Multi-Modulus (MM) criterion. A
pre-whitening filter is utilized to transform the problem into finding
a unitary beamformer matrix. Then, applying iterative Givens and
Hyperbolic rotations results in Givens Multi-modulus Algorithm
(G-MMA) and Hyperbolic G-MMA (HG-MMA), respectively. Pro-
posed algorithms are compared with several BSS algorithms in
terms of Signal to Interference and Noise Ratio (SINR) and Symbol
Error Rate (SER) and it was shown to outperform them.

Index Terms— blind source separation, constant modulus algo-
rithm, multi-modulus algorithm, Givens and Hyperbolic rotations

1. INTRODUCTION

Blind Source Separation (BSS) is an important tool as it allows us
to get rid of training sequences which might not be available or too
complex to implement and reduces the effective data rate. BSS uses
a priori information regarding the statistics of transmitted source
signals. In the context of MIMO systems, BSS algorithms aim in
finding a filtering matrix using only the received signals in order to
estimate source signals and unknown channel matrix. Various BSS
cost functions can be found in the literature [1, 2]. Among them,
Constant Modulus (CM) criterion for phase modulated signals such
as PSK and MM criterion for higher QAM signals have attracted an
important interest.

The CM criterion restricts the squared modulus of the output to
be constant. However, the MM criterion improves the CM one by
utilizing dispersion of real and imaginary parts separately, so it is
more suitable for higher QAM constellation. In the context of blind
equalization, several algorithms are presented in [3] and [4] to min-
imize the CM and MM criteria, respectively. For MIMO systems,
out of numerous implementations of CM criterion, the algebraic so-
lution named as Analytical Constant Modulus Algorithm (ACMA)
[5] provides an exact solution in the noise free case. It is capable
of separating all sources in a batch mode using only few samples by
solving a genaralized eigenvalue problem. To overcome the draw-
back of numerical complexity of ACMA, two algorithms G-CMA
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and HG-CMA are presented in [6], which outperform ACMA. Sim-
ilarly for MIMO systems, a Multi-Modulus Algorithm (MMA) is
presented in [7], which outperforms the Multi-User Kurtosis (MUK)
algorithm [8].

In this paper, we propose two algorithms to minimize MM cri-
terion using unitary Givens and non-unitary Hyperbolic rotations
[9, 10]. The received signals are passed through a pre-whitening
filter so that the problem can be reduced to finding a unitary beam-
former matrix. Then, the complex received filtered signals are con-
verted into real one before applying the rotations iteratively to find
the desired beamformer matrix.

To the best of our knowledge, the MM criterion has never been
minimized using Givens and Hyperbolic rotations in the context of
BSS. Previously, Stochastic Gradient Algorithm (SGA) and analyt-
ical techniques are used to find the beamformer matrix for MIMO
systems, such as MIMO MMA [7] and Analytical MMA (AMMA)
[11]. As SGA is slow in convergence so our proposed algorithms are
faster than MIMO MMA. Moreover, the SINR and SER curves show
that proposed algorithms perform much better than MUK, ACMA,
G-CMA, HG-CMA and AMMA.

The remaining part of the paper is organized as follows: In Sec-
tion 2 problem formulation and assumptions are presented. Section
3 and 4 introduces the G-MMA and HG-MMA algorithms, respec-
tively. Simulation results are presented in Section 5 and Section 6
concludes the paper.

2. PROBLEM FORMULATION

Consider below given MIMO system with M sources and N re-
ceivers

y(i) = x(i) + n(i) = As(i) + n(i) (1)
where s(i) = [s1(i), s2(i), . . . , sM (i)]T is M × 1 source vec-
tor, n(i) = [n1(i), n2(i), . . . , nN (i)]T is the N × 1 additive
noise vector, A is the N ×M MIMO channel matrix and y(i) =
[y1(i), y2(i), . . . , yN (i)]T is the N × 1 received vector.

It is assumed that N ≥ M so the channel matrix A is full col-
umn rank, source signals are zero mean, discrete valued, independent
and identically distributed (i.i.d) random processes and the noise is
additive white independent from the source signals.

The source signals are recovered blindly (i.e., relying only on
received data) using M × N beamformer matrix W. The receiver
output can be written as

z(i) = Wy(i) = WAs(i) + n̄(i) = Gs(i) + n̄(i) (2)

where z(i) = [z1(i), z2(i), . . . , zM (i)]T is the M × 1 vector of the
estimated source signals, G = WA is the M ×M global system
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matrix and n̄(i) = Wn(i) is the filtered noise at the receiver output.
Usually in BSS, the output is recovered up to a possible permutation
and scaling factor [6] i.e., Wx(i) = PΛs(i), where P is a permu-
tation matrix and Λ is a non-singular diagonal matrix. One proposes
to estimate matrix W by minimizing the MM criterion defined by
[12]

J (W) =

K∑
j=1

M∑
i=1

(
(zij,R)2 −RR

)2
+
(
(zij,I)2 −RI

)2
(3)

where RR = E[s4R(i)]/E[s2R(i)] and RI = E[s4I(i)]/E[s2I(i)] are
dispersion constants of real and imaginary parts respectively, zij is
the (i, j)th element of Z = WY, with Y = [y(1),y(2), . . . ,y(K)]
andK is the sample size. Also xR and xI denotes the real and imag-
inary parts of signal x.

To simplify the problem, a prewhitening operation [3, 6] is ap-
plied on received signals which reduces the dimension of Y from
N × K to M × K. Using underscore to denote prewhitened vari-
ables and assuming the noise free case, the received signal after
prewhitening can be given as Y = BY = BAS = VS, where
B is an M ×N prefilter, S is the M ×K source signals matrix and
V = BA is a M ×M unitary1 matrix. Now, the problem of BSS
is changed into finding a matrix V and thus the beamformer matrix
can be expressed as W = V−1B resulting in output

Z = WY = V−1BY = V−1Y = V−1VS = S (4)

After prewhitening, to minimize the MM cost function given
in (3), complex received prewhitened signal matrix Y is converted
into real matrices containing real and imaginary parts. If matrix X

after transformation to real matrix is shown as X́ then the received
prewhitened transformed matrix is given as Ý = V́Ś where

Ý =

[
YR

YI

]
2M ×K and V́ =

[
VR −VI

VI VR

]
2M × 2M (5)

3. GIVENS MMA (G-MMA)

To miminize the MM criterion in (3), matrix V́ needs to be rewritten
using Givens rotations. Similar to Jacobi-like algorithms [13, 14]
and using Lemma 1 given in [15], matrix V́ can be decomposed into
a product of elementary Givens rotations Gp,q(θ)

V́=
∏

NSweeps

∏
1≤p,q≤M

Gp,q(θ)Gp+M,q+M (θ)Gp,q+M (θ́)Gq,p+M (θ́) (6)

whereNSweeps denotes the number of iterations and Gp,q is an iden-
tity matrix except for the four elements Gpp,Gqq,Gpq and Gqp given
by [

Gpp Gpq
Gqp Gqq

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(7)

The specific rotation matrix selection in (6) is used to preserve the
structure of V́ shown in (5). Also, rotations Gp,q and Gp+M,q+M

are applied using same parameter (θ) while Gp,q+M and Gq,p+M

are applied using another same parameter (θ́).

1This is the ideal case when K � 1 and noise is negligible. In this case,
V is searched as a unitary matrix using Givens rotations (G-MMA). Other-
wise, if the sample size is small or moderate, one allows deviation from uni-
tary condition by using both Givens and Hyperbolic rotations (HG-MMA).

In order to minimize the MM cost function in (3), we only need
to find the rotation angles (θ) and (θ́) in a successive way. So, con-
sider only one unitary transformation Ỹ = Gp,qÝ, which according
to (7) only changes the rows p and q of Ý such as

ỹpj = cos(θ)ý
pj

+ sin(θ)ý
qj

ỹqj = − sin(θ)ý
pj

+ cos(θ)ý
qj

(8)

where ý
ij

denotes the (i, j)th entry of Ý. So using (8), only two
rows i = p and i = q of the real part of (3) are modified and omitting
the terms in Ý independent from (θ), (3) can be rewritten as

J (Gpq) =

K∑
j=1

[(
ỹ2pj −RR

)2
+
(
ỹ2qj −RR

)2]
(9)

Using double angle identities and (8), we get

ỹ2pj = tTj v +
1

2

(
ý2
pj

+ ý2
qj

)
ỹ2qj = −tTj v +

1

2

(
ý2
pj

+ ý2
qj

) (10)

where
v =

[
cos(2θ) sin(2θ)

]T
tj =

[
1
2
(ý2

pj
− ý2

qj
) ý

pj
ý
qj

]T (11)

Using (10) in (9), we obtain

J (Gpq) = 2vT
K∑

j=1

[
tjt

T
j

]
v + 2

(
ý2
pj

+ ý2
qj

2
−RR

)2

(12)

Similarly, by applying rotation Gp+M,q+M with the same angle pa-
rameter θ, one finally obtains (constant terms are again omitted)

J (Gpq Gp+M,q+M ) = 2vT
K∑

j=1

[
tjt

T
j + t́j t́

T
j

]
v (13)

where t́j = [ 1
2
(ý2

p+M,j
− ý2

q+M,j
), ý

p+M,j
ý
q+M,j

]T. By setting
the derivative of (13) w.r.t (θ) to zero, we get

θ =
1

4
arctan

 4
∑K

j=1 (ý2
pj
− ý2

qj
)ý

pj
ý
qj

+ . . .∑K
j=1

{
(ý2

pj
− ý2

qj
)2 − 4 ý2

pj
ý2
qj

}
+ . . .

4
∑K

j=1 (ý2
p+M,j

− ý2
q+M,j

)ý
p+M,j

ý
q+M,j∑K

j=1

{
(ý2

p+M,j
− ý2

q+M,j
)2 − 4 ý2

p+M,j
ý2
q+M,j

}
 (14)

The remaining Givens rotations can be found similarly and applied
successively on matrix Ý to compute V́ according to (6) where ma-
trix V́ is initialized as V́ = I as shown in Table 1.

4. HYPERBOLIC G-MMA (HG-MMA)

G-MMA does not perform well for small number of samples K, so
non-unitary Hyperbolic rotations are applied alternatively along with
Givens rotations to overcome this limitation, resulting in algorithm
named HG-MMA. Matrix V́ can be decomposed into a product of
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Initialization: V́ = I2M
1. Prewhitening: Y = BY

2. Construct real matrix Ý using (5)
3. Givens Rotations:
for i = 1 : NSweeps do

for p = 1 : M − 1 do
for q = p+ 1 : M do

a. find θ for (p, q) & (p+M, q +M) using (14)
b. Compute Gp,q&Gp+M,q+M using (7) for same (θ)
c. Ý = Gp,qGp+M,q+MÝ

d. V́ = Gp,qGp+M,q+MV́
repeat steps (a to d) for (p, q+M) & (q, p+M) using
same (θ́)

end for
end for

end for
4. Construct complex matrix V using (5)
5. Compute separation matrix: W = VHB

6. Estimated Sources: Ŝ = WY

Table 1. Givens MMA (G-MMA) Algorithm

elementary Hyperbolic rotations, Givens rotations and normalization
transformation as follows

V́=
∏

NSweeps

∏
1≤p,q≤M

Γp,qΓp+M,q+MΓp,q+MΓq,p+M

Γp,q = Dp,qGp,qHp,q

(15)

where Dp,q,Gp,q and Hp,q refer to normalization, Givens and Hy-
perbolic transformations, respectively. Gp,q is defined in (7) and
similarly Hp,q is an identity matrix except for the four elements
Hpp,Hqq,Hpq andHqp given by[

Hpp Hpq

Hqp Hqq

]
=

[
cosh(γ) sinh(γ)
sinh(γ) cosh(γ)

]
(16)

where γ is a hyperbolic transformation parameter. Similar to Givens
rotations, the Hyperbolic rotations Hp,q and Hp+M,q+M are ap-
plied using same parameter (γ) while Hp,q+M and Hq,p+M are
applied using another same but opposite parameter (γ́) and (−γ́),
respectively2.

We will consider dispersion parametersRR andRI be equal to 1
and use Dp,q for normalization where Dp,q is a diagonal matrix with
diagonal elements equal to one except for the two elements Dpp =
λp and Dqq = λq . Below, we give a brief of finding hyperbolic
and normalization transformation parameters to minimize the MM
criterion (3).

Similar to Givens rotations we will consider only one non-
unitary transformation Ỹ = Hp,qÝ, which according to (16) only
changes the rows p and q of Ý such as

ỹpj = cosh(γ)ý
pj

+ sinh(γ)ý
qj

ỹqj = sinh(γ)ý
pj

+ cosh(γ)ý
qj

(17)

2Indeed it is shown in [15] that these conditions are necessary for preserv-
ing the structure of matrix V́ in (5) along the iterations.

Using hyperbolic double angle identities and (17), we get

ỹ2pj = rTj u +
1

2

(
ý2
pj
− ý2

qj

)
ỹ2qj = rTj u− 1

2

(
ý2
pj
− ý2

qj

) (18)

where
u =

[
cosh(2γ) sinh(2γ)

]T
rj =

[
1
2
(ý2

pj
+ ý2

qj
) ý

pj
ý
qj

]T (19)

Using (18) and omitting the terms of Ý independent from (γ), (3)
can be rewritten as

J (Hp,q) = uT

[
K∑

j=1

rjr
T
j

]
u− 2uT

[
K∑

j=1

rj

]
= uTRu− 2rTu

(20)

The optimization problem in (20) can be solved using the Lagrange
multiplier method and thus can be given as

min
u
F(u) s.t. uTJ2u = 1 (21)

where J2 = diag([1,−1]), such a constraint is equivalent to
cosh2(2γ)− sinh2(2γ) = 1. The solution of (21) is given as

u = (R + λJ2)−1r (22)

where λ is the solution of

rT(R + λJ2)−1J2(R + λJ2)−1r = 1 (23)

which is a 4-th order polynomial equation and desired solution λ is
it’s real valued root that corresponds to the minimum value of (21).
Using desired λ in (22) will give us the solution u = [u1, u2]T and
the Hyperbolic transformation matrix can be computed as

Hpp = Hqq =

√
1 + u1

2
and Hpq = Hqp =

u2

Hpp
(24)

After applying Hyperbolic and Givens rotations, normalization
transformation is applied in order to compensate for the dispersion
parameters RR and RI . Normalization is done for only two rows p
and q modified by Givens and Hyperbolic rotations. Considering the
transformation Ỹ = Dp,qÝ, only two parameters (λp, λq) needs
to be computed for the minimization of MM criterion so the cost
function can be expressed as

J (Dp,q) =

K∑
j=1

λ4
p ỹ

4
Rpj
− 2λ2

p ỹ
2
Rpj

+ λ4
q ỹ

4
Rqj
− 2λ2

q ỹ
2
Rqj

(25)

Taking the derivative of (25) with respect to these two parameters
and equating the result to zero gives optimal parameters as

λp =

√√√√ K∑
j=1

ỹ2Rpj
/

K∑
j=1

ỹ4Rpj

λq =

√√√√ K∑
j=1

ỹ2Rqj
/

K∑
j=1

ỹ4Rqj

(26)

HG-MMA is presented in Table 2. To make adaptive version
of HG-MMA, we need to consider a sliding window of size T ,
Y(t−1) = [y(t − T ), . . . ,y(t − 2),y(t − 1)] which is updated
adaptively at each arrival of the new symbol y(t). At each time in-
stant, only one sweep of rotations are applied on the sliding window
and matrix W is updated accordingly.
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Initialization: Ẃ = I2M
Signal subspace projection if N > M

1. Create real matrix Ý using (5)
2. Hyperbolic, Givens and Normalization Rotations:
for i = 1 : NSweeps do

for p = 1 : M − 1 do
for q = p+ 1 : M do

a. find R1 & r1 for (p, q) using (20)
b. find R2 & r2 for (p+M, q +M) using (20)
c. find (γ) i.e. u using R = R1 + R2 and r = r1 + r2
d. Compute Hp,q & Hp+M,q+M using (24) for (γ)
e. Ý = Hp,qHp+M,q+MÝ

f. V́ = Hp,qHp+M,q+MV́
g. Apply Givens rotation using (a to d) of Table 1
h. Compute Dp,q & Dp+M,q+M using (26)
i. Ý = Dp,qDp+M,q+MÝ

j. V́ = Dp,qDp+M,q+MV́
repeat steps (a to j) for (p, q+M) & (q, p+M) using
(θ́, γ́) & (θ́,−γ́)a, respectively

end for
end for

end for
4. Construct complex matrix W similar to V using (4) and (5)
5. Estimated Sources: Ŝ = WY

a(γ́) is obtained using R = R1 + Ŕ2 and r = r1 + ŕ2, where Ŕ2

and ŕ2 are obtained using (20) with rj = [ 1
2

(ý2
pj

+ ý2
qj

),−ý
pj
ý
qj

]T

Table 2. Hyperbolic Givens MMA (HG-MMA) Algorithm

5. SIMULATION RESULTS

For comparison, we have considered a MIMO system having 2 trans-
mitters and 4 receivers (M = 2, N = 4). 50 symbols (K = 50)
are transmitted by each source from 4-QAM constellation while 200
symbols (K = 200) are drawn from 16-QAM. Each symbol is
passed through a channel matrix A, generated randomly at each it-
eration. Sources, noise and channel has the same properties as de-
scribed in Section 2. The results are averaged over 1000 Monte Carlo
runs.

In Figure 1, we have considered M = 5, N = 7 and 16-QAM
constellation. It can be seen that proposed algorithms provide better
performance as compared to batch algorithms HG-CMA, G-CMA
and ACMA. Moreover, performance improves with the increase in
number of symbols. Also, we noticed that the performance of G-
MMA is much lower than HG-MMA for K = 50 because of the
ineffective pre-whitening operation.

Figure 2 compares the SINR vs. SNR of HG-MMA, G-MMA
with AMMA, ACMA and MUK for both cases. The results for 4-
QAM is shown in Figure 2 (a) while (b) shows 16-QAM case. The
highest SINR is obtained with the proposed HG-MMA algorithm,
followed by G-MMA and AMMA, then by ACMA and the lowest
SINR is obtained with the MUK. For both cases, the proposed algo-
rithms outperform the three algorithms.

Figure 3 depicts the SER of proposed algorithms vs. SNR. We
noticed that the proposed HG-MMA and G-MMA gives the best per-
formance both for 4-QAM and 16-QAM cases. It is noticed that
for higher QAM constellation, the performance of AMMA, ACMA
and MUK highly deteriorate but HG-MMA and G-MMA still shows
good results.
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Fig. 1. SINR of HG-MMA, HG-CMA, G-MMA, G-CMA and
AMMA vs. SNR for M = 5, N = 7 for different number of sam-
ples K, 16-QAM case.
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(a) 4-QAM with K = 50
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(b) 16-QAM with K = 200

Fig. 2. SINR of HG-MMA, G-MMA, AMMA, ACMA and MUK
vs. SNR for M = 2, N = 4.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R
 (

dB
)

 

 

HG−MMA
G−MMA
AMMA
ACMA
MUK u=0.18

(a) 4-QAM with K = 50
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Fig. 3. SER of HG-MMA, G-MMA, AMMA, ACMA and MUK vs.
SNR for M = 2, N = 4.

6. CONCLUSION

In this paper, two new BSS algorithms named G-MMA and HG-
MMA are presented using unitary Givens and non-unitary Hyper-
bolic rotations. Both are based on the minimization of the Multi-
modulus criterion. G-MMA is suitable for a large number of sam-
ples but in case of small number of samples, HG-MMA should be
used. These algorithms perform better than AMMA and ACMA in
terms of the SINR and SER.
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