
COMMON COMPONENTS ANALYSIS VIA LINKED BLIND SOURCE SEPARATION

Guoxu Zhou⋆ Andrzej Cichocki⋆, IEEE Fellow Danilo P. Mandic†, IEEE Fellow

⋆ Lab for Advanced Brain Signal Processing, RIKEN Brain Science Institute,
Wako-shi Saitama, 351-0105 Japan. Email: {zhouguoxu,cia}@brain.riken.jp.

† Department of Electrical and Electronic Engineering, Imperial College,
London, United Kingdom. E-mail: d.mandic@imperial.ac.uk.

ABSTRACT

Very often data we encounter in practice is a collection of
matrices rather than a single matrix. These multi-block data
often share some common features, due to the background in
which they are measured. In this study we propose a new
concept of linked blind source separation (BSS) that aims at
discovering and extracting unique and physically meaningful
common components from multi-block data, which also con-
tain strong individual components. The validity and potential
of the proposed method is justified by simulations.

Index Terms— Linked blind source separation, group in-
dependent component analysis, nonnegative matrix factoriza-
tion

1. INTRODUCTION

High-dimensional data are increasingly prevalent in many ar-
eas of science. To this end, a variety of data analysis tools
have been proposed to perform data compression, interpre-
tation, information retrieve, etc. Recently, multi-block data
analysis has also attracted attention [1, 2, 3, 4]. Multi-block
data is encountered when multiple measurements are taken
in a set of experiments from the same subject (using various
modalities or from multiple subjects under similar configu-
rations. For example, in biomedical studies, human electro-
physiological signals responding to some pre-designed stim-
uli are collected from different individuals and trials. A num-
ber of different technologies and devices may be used to col-
lect diverse information reflecting different aspects of data.
All these result in naturally linked multi-block data. These
data typically share some common information due to the
background in which they are collected, and at the same time
they also possess their individual features. It is therefore very
meaningful to analyze such data in a connected and linked
way and not individually. This study is devoted to such an
interesting and promising topic.

Methods specifically developed for multi-block data anal-
ysis already exist. By assuming that the multi-block data
are spanned by a set of common components, group inde-
pendent component analysis (group ICA) and independent

vector analysis have achieved some success in multi-block
fMRI data analysis [5, 6]. Besides sharing common compo-
nents, however, the multi-block data also contain their indi-
vidual components, a key issue for which existing methods
are not suitable. To this end, a recent method named Joint
and Individual Variation Explained (JIVE) was proposed for
integrated analysis of multiple data types [2], together with
a new algorithm which separates their joint and individual
subspaces. To our best knowledge, however, the potential of
unique common feature analysis is not yet fully exploited, in
particular the intimate link with blind source separation has
not yet been established.

2. COMMON ORTHOGONAL BASES EXTRACTION
(COBE)

2.1. The Model

Given a set of matrices Y = {Yn ∈ RI×Jn : n ∈ N},
N = {1, 2, . . . , N}, we are interested in the following linked
matrix factorization problem

Yn ≈ ĀB̄T
n + ĂnB̆

T
n

.
= Ȳn + Y̆n, n ∈ N , (1)

where Ā ∈ RI×C , Ăn ∈ RI×(Rn−C), Rn = rank(Yn),
and C ≤ min{Rn : n ∈ N}. As such, each matrix Yn is
represented by two parts: the common space Ȳn = ĀB̄T

n and
the individual space Y̆n = ĂnB̆

T
n , which are spanned by the

common components (i.e., columns of Ā) existing in all Yk

(k ∈ N ) and the individual components Ăn only present in
Yn, respectively. Our aim is to find the common components
Ā from a given set of matrices Yn, n ∈ N .

To solve (1), the JIVE method [2] considers the following
optimization problem (although not explicitly stated in [2]):

min
∑
n∈N

∥∥∥Yn − ĀB̄T
n − ĂnB̆

T
n

∥∥∥2
F

s.t. ĀT Ā = IC , Ă
T
n Ăn = IRn−C ,

ĀT Ăn = 0, n ∈ N .

(2)

The physical meaning of the orthogonality constraints ĀT Ăn =
0 is that there is no any interaction between common and indi-
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vidual subspaces. In each iteration JIVE effectively performs
joint principal component analysis (PCA) and individual PCA
in an alternating manner: (i) in the joint PCA step, the indi-
vidual subspaces are removed prior to applying PCA to all
data; (ii) the individual PCA step is performed on each single
individual data after the common subspace has been removed.
The existence of both common and individual components
distinguishes (2) from existing group ICA methods [5, 6, 7].

The JIVE method suffers from two major drawbacks.
First, notice that the matrix An =

[
Ā Ăn

]
essentially

gives the optimal rank-Rn approximation of Yn but with
separated common and individual subspaces. In other words,
(2) consists of two major functions: dimensionality reduction
of each single data matrix Yn and separation of common and
individual subspaces of all data matrices. Apparently, the
dimensionality reduction of Yn depends on each Yn only,
while the latter requires an integrated analysis of all data
matrices. For this reason, it is more natural to realize these
two stpes separately rather than simultaneously. The JIVE
method performs these two functions simultaneously, as a
result, the ambiguity associated with JIVE is in giving princi-
pal components of all data rather than common components,
especially when the common components in a data ensemble
are relatively weak but are consistently present in all data
sets. Second, the factors given by JIVE are not unique and
lack specific physical meaning, this can be observed from
Ȳn = (ĀU)(U−1B̄T

n ), where U is any invertible matrix of
appropriate size. This paper introduce a method to overcome
these two drawbacks.

2.2. The COBE Algorithm

As discussed above, it is more reasonable to perform dimen-
sionality reduction and common and individual feature sepa-
ration separately rather than simultaneously. Hence, we con-
sider a two-step approach to solve (2):

Step 1: Dimensionality reduction: update the matrices
Yn in (2) by their optimal rank-Rn approximation AnB

T
n .

We call the original Yn raw data and the reduced version
Yn ← AnB

T
n cleaned data;

Step 2: Common and Individual Subspaces Separation:
solve (2) using the cleaned data.
The key point is that, as Yn are cleaned and of exact rank-Rn,
in theory, we ensure the desire separation into the common
and individual subspaces, that is,

Yn = AnB
T
n = ĀB̄T

n + ĂnB̆
T
n , ∀n ∈ N , (3)

where An =
[
Ā Ăn

]
, Bn =

[
B̄n B̆n

]
, and (3) holds if

and only if Ā contain only common components. To illus-
trate this, suppose that Ā contains a component āk which is
not contained in a data block, say Yn0 . Obviously it is impos-
sible to represent Yn0

exactly using āk and another (Rn0
−1)

vectors. With (3), the optimal Ā and Ăn can be expressed as[
Ā Ăn

]
= YnB

T
n

†
, AT

nAn = IRn , n ∈ N , (4)

where (·)† denotes the Moore-Penrose pseudo-inverse of a
matrix. Let Yn = QnRn such that QT

nQn = I (this can
be achieved by using, e.g., QR decomposition), and define
Zn

.
= RnB

T
n
†. Then (4) is equivalent to[
Ā Ăn

]
= QnZn, n ∈ N , (5)

and hence for any n1, n2 ∈ N , n1 ̸= n2, the following holds{
Qn1zn1,k = Qn2zn2,k = āk if k ≤ C;

Qn1zn1,k ̸= Qn2zn2,k if k > C,
(6)

where zn,k and āk are the kth column of Zn and Ā, respec-
tively. This motivates us to solve the following model:

min
Zn, Ā

f(Zn, Ā) =
N∑

n=1

∥∥QnZn − Ā
∥∥2
F

s.t. ĀT Ā = I,

(7)

where f should be sufficiently small in order to guarantee the
extracted Ā are true common components. We then optimize
with respect to Zn and Ā alternatively. In this way, when Ā
is fixed, the optimal Zn is computed using least squares

Zn ← QT
n Ā, n ∈ N . (8)

And when Zn, n ∈ N , are fixed, (7) is equivalent to

max
Ā

trace(PT Ā) s.t. ĀT Ā = I (9)

where trace(·) denotes the trace of a matrix and

P =
∑N

n=1
QnZn. (10)

Let P = EΛVT ∈ RI×c be the truncated SVD (tSVD) of P,
where Λ = diag(λ1, λ2, . . . , λc) ∈ Rc×c is a diagonal matrix
with λ1 ≥ λ2 ≥ · · · ≥ λc > 0. Motivated by the work in [8]
(page 601)1, we show that the optimal solution of (9) is

Ā = EVT . (11)

In fact,

trace(PT Ā) = trace(VΛET Ā) = trace(Λ(ET ĀV)).

As ETE = I and (ĀV)T (ĀV) = I, we have [ET ĀV]ii ≤
1 , which means that trace(Λ(ET ĀV)) ≤

∑c
i=1 λi. Clearly,

given Ā = EVT and ĀT Ā = I, we have ET ĀV = I and
hence trace(PT Ā) reaches its upper bound

∑c
i=1 λi.

The above procedure is named Common Orthogonal
Bases Extraction (COBE) and the pseudo-code is presented
in Algorithm 1. Once Ā has been estimated, from (3), the
coefficient matrices B̄n can be computed from

B̄n =
(
YT

n − B̆nĂ
T
n

)
Ā(ĀTĀ)

−1
= YT

n Ā, (12)

this then allows us to compute the common subspace ĀB̄T
n

and the individual subspace Y̆n = Yn − ĀB̄T
n , ∀n ∈ N .

1The main difference is that here Ā is not necessarily square.
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Algorithm 1 The COBE Algorithm

Input: c and Yn, n ∈ N .
1: Let Yn=QnRn such that QT

nQn = I for all n.
2: Initialize Zn randomly.
3: while not converged do
4: P =

∑
n∈N QnZn.

5: Ā=EVT , where [E, Λ, V] = tSVD(P, c).
6: Zn ← QT

n Ā.
7: end while
8: return Ā.

3. LINKED BSS IN COMMON SUBSPACE

3.1. Linked BSS with Pre-whitening

So far we have only imposed the orthogonality constraints on
the components Ā. In this case, the common components are
not unique as the columns of ĀU also form a common or-
thogonal basis for any orthogonal matrix U with appropriate
size. Generally, we want to project the common components
onto a feature space with some desired property or unique-
ness. This can be done typically by, for example, blind source
separation (BSS) [9]. BSS is a problem of finding latent vari-
ables S from their linear mixtures Y = SMT such that

Ŝ = Ψ(Y) = Ψ(SMT ) = SPD (13)

where Ψ denotes a BSS algorithm, M is the mixing matrix.
P and D are a permutation matrix and a diagonal matrix, re-
spectively, which model unavoidable ambiguities of BSS. In
other words, by using BSS methods the sources can be ex-
actly recovered from their mixtures, subject to the scale and
permutation ambiguities without any knowledge of the mix-
ing matrix M. Hence, BSS is quite attractive and has severed
as feature extraction tools in a wide range of applications,
such as pattern recognition, classification, etc. Suppose the
common subspace Ȳn is spanned by a set of latent common
components (sources) S̄, that is,

Ȳn = S̄M̄T
n . (14)

From Ȳn = ĀB̄T
n , we have

Ā = S̄(B̄†
nM̄n)

T , (15)

that is, the columns of Ā are just the linear mixtures of S̄ with
the mixing matrix B̄†

nM̄n, which allows S̄ to be estimated via

ˆ̄S = Ψ(Ā) = S̄PD, (16)

by using a appropriate BSS algorithm Ψ. In this case, Ā is
the pre-whitened version of (14), from (15) and the fact that
ĀT Ā = I. By using BSS, we may obtain unique common
components with desired properties such as sparsity, indepen-
dence, temporal correlations, etc, by imposing suitable penal-
ties on S̄, or even nonlinear common features by using kernel

tricks [10]. We call the above BSS procedure linked BSS be-
cause BSS is performed on multi-block linked data Yn. Note
that the joint BSS (JBSS) method in [1] also performs BSS
involving multi-block data. It extracts a group of signals with
the highest correlation each time and it requires that the ex-
tracted groups have distinct correlations. In other words, the
JBSS method is actually a way to realize BSS by applying
multiple-set canonical correlation analysis. In contrast, the
linked BSS method extracts common bases first and then ap-
plies any suitable BSS to discover common components with
desired properties and diversities.

3.2. Common Nonnegative Features Extraction (CNFE)

In the case where S̄ is required to be nonnegative, we cannot
apply NMF methods on Ā directly. In this case, we may use
two steps to extract nonnegative common components. First,
the common space is estimated as Ȳn = Ā(Ā

T
Yn). Then

we consider the following low-rank approximation based
(semi) nonnegative matrix factorization (NMF) [11, 12]:

min
∑

n

∥∥S̄M̄T
n − ĀB̄T

n

∥∥2
F
, s.t. S̄ ⪰ 0. (17)

By using low-rank NMF (if M̄n is also nonnegative) or low-
rank semiNMF (where M̄n is arbitrary) we can then extract
the common nonnegative components S̄. For example, by us-
ing the following multiplicative update rules iteratively, both
S̄ and M̄ are nonnegative:

S̄← S̄⊛ [Ā
∑
n

(B̄T
nM̄n)]+ ⊘ S̄(

∑
n

M̄T
nM̄n),

M̄n ← M̄n ⊛ [B̄n(Ā
T S̄)]+ ⊘ M̄n(S̄

T S̄), n ∈ N ,

(18)

where ⊛ and ⊘ are element-wise product and division of
matrices, and [x]+ = max(x, 0) is element-wise defined on
matrices. See [11] for detailed convergence analysis.

4. SIMULATIONS AND EXPERIMENTS

Linked BSS. In this simulation we generated a total of
ten matrices An ∈ R5000×10, n = 1, 2, . . . , 10, whose
first four columns were the speech signals included in the
benchmark of ICALAB (named Speech4.mat) [13], and the
other six components were drawn from independent stan-
dard normal distributions. The entries of the mixing matrices
Bn ∈ R50×10 were also drawn from independent standard
normal distributions. Finally let Yn = AnB

T
n + En, where

En models white Gaussian noise (SNR=20dB). We first used
the COBE, JIVE [2], JBSS [1], and PCA methods to extract
the common components. Then we ran the SOBI method [14]
to recover the latent speech signals (as the JBSS performed
not so good in this simulation we also used SOBI to improve
its results). TABLE 1 shows the simulation results averaged
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Table 1: Performance comparison in linked BSS. The latent
signals were estimated by applying the SOBI method to the
common subspaces extracted by the algorithms.

Algorithm SIR1 SIR2 SIR3 SIR4 Runtime (s)
COBE 22.4 26.0 31.5 32.0 0.1

JIVE 22.4 26.0 31.2 31.8 7.3
JBSS 22.6 23.1 23.5 25.0 1.6
PCA 15.5 17.2 18.0 19.4 0.5

over 100 Monte-Carlo runs, with the signal-to-interference
ratio of the cth estimated signal, i.e. SIRc, defined as:

SIRc = 10 log10

∑
t s

2
t,c∑

t(st,c − ŝt,c)2
, (19)

where sc, ŝc are normalized random variables with zero mean
and unit variance, and ŝc is an estimate of sc. It can be seen
that JIVE and COBE achieved higher SIRs than JBSS and
PCA, although the performance of JBSS has been improved
after incorporating the SOBI method compared with its origi-
nal version. Moreover, although PCA has a close relation with
COBE, it can be seen from the table that the common features
extracted by PCA are often contaminated by individual fea-
tures. COBE and JIVE almost achieved the same separation
accuracy, but COBE was much faster. Next, all the common
components were rescaled such that ∥āc∥2/∥ăk∥2 ≈ 10%.
This time only COBE was able to extract the true common
components, illustrating enhanced robustness of COBE over
JIVE, when the common components were relatively weak.

Common Nonnegative Components Extraction. In this
experiment we generated four sets of nonnegative sources
whose first two common components were respectively an
image of fingerprint2 and a patch of a document (see Fig-
ure1(c)), while to model interference the other eight com-
ponents were drawn from independent uniform distributions
between 0 and 1. They were mixed via different mixing ma-
trices whose elements were drawn from independent uniform
distributions between 0 and 1. It is known that the common
sources in this example are dependent and consequently can-
not be separated by using ICA methods; and because they are
mixed with random dense components, they also cannot be
separated by using ordinary NMF algorithms on each single
set of mixtures. As the fingerprint and the patch existed in all
images, we ran COBE to extract the bases of common sources
and then used CNFE to extract the fingerprint and the patch.
One typical realization is shown in Figure1(d). Figure1(b)
displays four example images of nonnegative components
extracted by using the nLCA-IVM method [15]. Due to the
simultaneous presence of dense components (thus the identi-
fiability conditions of nLCA-IVM were not satisfied here), it
is not surprising that nLCA-IVM failed to extract the desired

2Created by Phillip Martin, available at: http://science.
phillipmartin.info/science_fingerprint.htm.

(a) Examples of the observations/mixtures

(b) Typical images extracted by nLCA-IVM

(c) The sources (d) The images extracted by CNFE

Fig. 1: Illustration of unique common nonnegative feature ex-
traction. Common and individual subspaces separation priori
to the unique common nonnegative components played a key
role.

source images in this example. This experiment shows how
the proposed method can be used to extract common nonneg-
ative features, or equivalently, as nonnegative high correlation
analysis method.

5. CONCLUSION

A novel linked blind source separation (BSS) scheme was
proposed in this paper with the aim of discovering and extract-
ing unique and physically meaningful common components
from multi-block data, each of which contains both common
components shared by all data and individual components
possessed by very data item only. In the proposed method,
the common subspace is extracted first and then any suitable
BSS method can be applied to extract unique and physically
meaningful common components. Simulations have shown
the validity and efficiency of the proposed method compared
to the state-of-the-art.
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