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ABSTRACT

In this work, we consider enhancing a target speech from a single-
channel noisy observation corrupted by non-stationary noises at low
signal-to-noise ratios (SNRs). We take a classification-based ap-
proach, where the objective is to estimate an Ideal Binary Mask
(IBM) that classifies each time-frequency (T-F) unit of the noisy ob-
servation into one of the two categories: speech-dominant unit or
noise-dominant unit. The estimated mask is used to binary weight
the noisy mixture to obtain the enhanced speech. In the proposed
system, the sparse non-negative matrix factorization (NMF) is used
to extract features from the noisy observation, followed by a Deep
Neural Network (DNN) for classification. Compared with several
existing classification-based systems, the proposed system uses min-
imal speech-specific domain knowledge, but is able to achieve better
performance in certain low SNR regions. Moreover, the proposed
system outperforms the traditional statistical method, especially in
terms of improving the intelligibility.

Index Terms— Speech enhancement, deep neural network
(DNN), non-negative matrix factorization (NMF), sparse coding

1. INTRODUCTION

Enhancing speech from a single-microphone noisy recording is an
important task in many engineering systems, including hearing aids,
mobile communication, and robust speech recognition. Two main
metrics for evaluating enhancement algorithms are the quality and
the intelligibility of the enhanced speech. In this paper, we propose
a classification-based algorithm that improves both of these two met-
rics, under low input SNR (−5dB) and for three types of background
noises: street noise, factory noise and babble noise. The considered
scenarios are challenging – even normal-hearing listeners have less
than 50% recognition rate [1].

Various speech enhancement algorithms have been proposed
in the literature, including statistical-based methods such as the
minimum mean-square error (MMSE) estimators [2], as well as the
NMF-based algorithms [3–6]. Despite different approaches taken,
all these algorithms aim to estimate a “soft gain” for producing the
enhanced speech. In contrast, there are a few works that apply “hard
gain” – those gain coefficients that only take value from 0 or 1 – and
achieve surprisingly good enhancement results. For example, the
authors of [7] have shown that using the Ideal Binary Mask (IBM) as
the hard gain can significantly improve the intelligibility, compared
with the traditional soft-gain based approaches [8]. In IBM, a binary
mask is applied to the noisy mixture in the time-frequency (T-F)
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representation, so that the speech-dominant T-F units with high S-
NRs are kept and the rest of the T-F units are discarded. Despite its
success, IBM is impractical because it requires access to both the
actual noise and speech samples. However, only noisy mixture is
accessible in the enhancement stage. To overcome this difficulty,
several classification-based algorithms such as [1, 9–11] have been
proposed. In these algorithms, features are extracted from the noisy
mixture, and a classifier is applied for estimating IBM.

The success of all the classification-based algorithms mentioned
above heavily depends on using sophisticated speech-specific fea-
tures. For example, the Amplitude Modulation Spectrograms (AM-
S) are used in [1, 9]. A composite feature includes AMS, Relative
Spectral Transform and Perceptual Linear Prediction (RASTA-PLP),
Mel-Frequency Cepstral Coefficients (MFCC) and pitch-based fea-
tures are used in [10]. Multi-Resolution Cochleagram (MRCG), a
new feature that captures different resolutions of the T-F representa-
tion, is proposed in [11]. After the speech-specific features are ex-
tracted, different classifiers, such as the Bayesian classifier [1], the
Support Vector Machine (SVM) [9], or the neural network [10, 11]
can be applied.

In this paper, we propose a new algorithm for IBM-based speech
enhancement. We demonstrate that superior enhancement perfor-
mance can be achieved by using a simple feature extraction step fol-
lowed by a DNN classifier, without requiring much speech-specific
domain knowledge during the entire process. In particular, we use
the standard Sparse NMF (SNMF) to extract features from the noisy
mixture. This step is simple and easy to implement. Though SNM-
F has been applied to soft gain calculation before [3–6], this is the
first time it is used for IBM estimation. The SNMF step is followed
by a DNN classifier, which is a neural network with more than one
hidden layers. Here we use DNN rather than SVM for classification
because the former achieves a better performance in our experiment,
which is in line with other reports [12, 13].

Notation: We use uppercase letters to denote matrices and low-
ercase letters to denote either vectors or scalars. Xn represents the
n-th column of the matrix X , while the (k, n)-th entry is denoted by
Xk,n. ·/·, ⊙ and ≥ denote entry-wise division, multiplication and
“greater or equal to” respectively. X .β means raising each entry of
X to the power β. RK×N denotes the set of all K × N matrices
with real entry values, while RK×N

+ is defined similarly but with
non-negative entries. [A;B] denote the vertical concatenations of
matrices A and B.

2. SYSTEM DESCRIPTION
We first provide an overview of the proposed system shown in Fig.
1. The details will be described in latter subsections. As a proof of
concept, in this paper we consider a matched-noise condition, i.e.,
the noise types and the input SNRs in both the training and testing
stages are the same. For each type of noise, a system like Fig. 1 is
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trained independently. The proposed system differs from [9–11] in
how the feature extraction and the classification are performed.

In the training stage, time-domain signals are transformed into
the T-F representation by passing through an analysis front-end and
a cochleagram computation [14]. Then, we apply SNMF, a sparse
variant of NMF originally designed for object recognition [15], to
extract features. SNMF is divided into a dictionary training step
and a sparse coding step. In the dictionary training step, a speech
dictionary Ds and a noise dictionary Dv are learned from the speech
cochleagram S and the noise cochleagram V , respectively. These
dictionaries are used to extract features from the noisy cochleagram
Y in the sparse coding step. The extracted features together with the
true IBM are used to train the DNN classifier.

In the testing stage, noisy speech is first transformed into the
cochleagram representation, and is then passed through the sparse
coding block for feature extraction. Different from the training stage,
the sparse coding here uses the dictionaries already trained in the
training stage, and therefore does not require access to the actual
speech and noise. Taking the extracted features as input, the trained
DNN generates the estimated IBM. The resynthesis back-end takes
the estimated IBM and produces the enhanced speech.

2.1. Analysis front-end, Cochleagram, IBM, and Resynthesis
back-end
In the analysis front-end, audio files sampled at 16 kHz are passed
through a 64-channel Gammatone filterbank with center frequencies
spanning from 50 Hz to 8 kHz on the equivalent rectangular band-
width rate scale. The output of each filter is divided into 20-ms seg-
ments with 10-ms overlap. Energy in each segment is calculated and
then forms a T-F matrix called cochleagram. We use Y ∈ R64×N

+

to denote the cochleaagram of the noisy speech, where N represents
the total number of time frames. Let S and V denote the cochlea-
gram of clean speech and noise, respectively.

The ideal binary mask matrix B ∈ R64×N
+ is defined based on

whether a T-F unit is either speech-dominant or noise-dominant:

Bk,n =

{
1, if SNRk,n ≥ LC
0, otherwise

where SNRk,n =
Sk,n

Vk,n
denotes the local SNR, and LC denotes the

local SNR criterion which is set to −5 dB. Clearly, calculating IBM
requires access to S and V , which can only be done in the training
stage but not the testing stage.

In the resynthesis step, the estimated IBM (which will be ex-
plained later) is used to binarily weight the Gammatone filterbank
output of each channel. The speech-dominant regions are kept intact
while the noise-dominant regions are discarded. All the 64 weighted
streams are then summed to produce the final enhanced speech. We
use the implementation from Wang’s group1 for the analysis front-
end, cochleagram calculation, and the resynthesis back-end.

2.2. Learning Speech and Noise Dictionary
We first present the idea and the computational algorithm for the
dictionary learning step in SNMF, and then show how to specialize
it to speech and noise. Dictionary learning factorizes a non-negative
matrix X ∈ RK×N

+ into the product of a dictionary D ∈ RK×M
+

and a sparse code G ∈ RM×N
+ :

X ≈ D ×G (1)

where M denotes the size of the dictionary. Columns of D are called
atoms. Since G is sparse, only a few atoms suffice to represent X .

1See the code available at http://www.cse.ohio-state.edu/pnl/.
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Fig. 1. Block diagram of the proposed system. Modules highlighted
in red are those modules used only in the training stage; modules in
black are those used in both training and testing stage.

In other words, the sparse code G necessarily contains important
information about X . Computationally, factorization (1) is achieved
by solving (2):

min
D≥0,G≥0

dIS(X | DG) + λ
∑
m,n

log(ϵ+Gm,n) (2)

where dIS(· | ·) denotes the Itakura-Satio (IS) divergence [16] be-
tween matrices A and B:

dIS(A | B) =
∑
k,n

{
Ak,n

Bk,n
− log

Ak,n

Bk,n
− 1

}
.

The second term in (2) is a sparsity-promoting regularization [17].
The larger the λ, the sparser the G. Moreover, ϵ is a small positive
constant to make the term inside logarithm strictly positive. Similar
to [16], (2) can be solved by:

D ← D ⊙

{[
(DG).−2 ⊙X

]
GT

(DG).−1GT

}. 1
2

(3)

G ← G⊙

{
DT

[
(DG).−2 ⊙X

]
DT (DG).−1 + λ

ϵ+G

}. 1
2

(4)

Besides being easy to implement, these update rules generate non-
increasing objective values and converge theoretically [18].

A speech dictionary Ds ∈ R64×Ms

+ is trained by substituting S

for X in (2), while a noise dictionary Dv ∈ R64×Mv

+ is learned by
replacing X with V . Only one universal speech dictionary is trained,
while one noise dictionary is trained for each noise type. The speech
dictionary is expected to work well for all utterances regardless of
the gender, dialects, and content. Therefore, we set Ms > 64 with
λ > 0 in order to ensure the speech dictionary is comprehensive
enough. As for noise dictionary, we use Mv < 64 with λ = 0
because Dv is responsible for characterizing only one noise type.

2.3. Sparse Coding
By assuming a linear model, i.e., Y ≈ S + V , S and V can be
estimated from Y via sparse coding:

min
Gs,Gv

dIS (Y | DsGs +DvGv)+β
∑
m,n

log
(
ϵ+Gs

m,n

)
(5)
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where Ds and Dv are the previously learned dictionaries and ϵ is
a small positive constant. Problem (5) can be efficiently solved by
a similar update as in (4). By the ways that Ds and Dv are trained,
we have DsGs ≈ S and DvGv ≈ V . If both approximations are
accurate, then the IBM can be reliably estimated by a simple thresh-
olding:

B̂k,n =

{
1, if [DsGs

n]k
[DvGv

n]n
≥ LC

0, otherwise
, (6)

which can be viewed as applying a simple linear classifier on the
sparse code Gn := [Gs

n;G
v
n] ∈ R

(Ms+Mv)×1
+ for each channel

k. However, if the approximation is inaccurate, then more advanced
classifiers such as SVM or DNN can improve the performance. To
include more temporal information, we concatenate two adjacent
frames to construct the final feature:

G̃ :=
{
G̃n ∈ R3(Ms+Mv)×1

+ | [Gn−1;Gn;Gn+1],∀ n
}

(7)

2.4. Deep Neural Network
We train a DNN for classification. For time frame n, it takes G̃n

as the input and takes [B1,n; · · · ;B64,n] ∈ R64×1
+ as the label. The

output of the network, the estimated IBM [B̂1,n; · · · ; B̂64,n], is used
to resynthesize the enhanced speech. In particular, we use a 5-layer
Rectified Linear Unit (ReLU) [19] network, which uses a rectified
activation function, max(0, z), as the non-linear layer. Compared
with traditional sigmodial or hyperbolic tangent non-linearity, Re-
LU achieves a better performance without any unsupervised pre-
training [20]. Training of the network is performed by minimizing
the cross entropy loss over the training set with pure back propaga-
tion algorithm.

2.5. Rationale of the System Design
In our design, we perform IBM estimation in the cochleagram do-
main instead of the conventional spectrogram domain. There are
two main reasons behind our choice of the working domain. First,
the cochleagram only requires 64 channels to provide a fine enough
frequency resolution for a 16 kHz speech, while the convention-
al spectrogram usually requires at least 256 channels. The chan-
nel reduction comes from the non-uniform frequency spacing in the
cochleagram which mimics the human perception. From a classifi-
cation point of view, estimating a mask with dimension 64 is easier
and thus more desirable than a mask with dimension 256. Second,
despite the smaller dimensionality, masking on the cochleagram do-
main still results in high quality enhanced speech [10], provided the
mask is accurately estimated.

The SNMF is chosen for feature extraction, mainly due to its
simplicity and effectiveness. Existing works use sophisticated fea-
tures to find an accurate mask. The design and extraction of these
features heavily rely on extensive domain knowledge and human fine
tuning [1, 9–11]. In contrast, our SNMF based approach is concep-
tually much simple. However, despite the simplicity, the SNMF is
capable of extracting the desired speech and noise information, even
when the noise is non-stationary [3,6]. This desirable property is the
basis for achieving an accurate IBM estimation.

The DNN is used for classification, mainly due to its huge suc-
cess in various complicated machine learning tasks [12,13]. Certain-
ly, other classifiers such as SVM can also be used, but experimentally
we have found DNN to achieve the best result.

3. PERFORMANCE EVALUATION

3.1. Experiment Setting
The TIMIT data set [21] was used as the speech corpus. Three types
of noises from NOISEX-92 [22], namely, street, factory, babble, are
taken as noise sources. Audio files are resampled at 16 kHz. Noisy
mixture is obtained by mixing a sentence with one type of noise at
−5 dB. In the training stage, a universal speech dictionary is trained
using 500 sentences from the “train” subset of TIMIT. For each noise
type v, a separate noise dictionary Dv is trained using a randomly
selected 30-second noise segment. Further, a DNN is trained using
4000 noisy sentences obtained by mixing utterances from the “train”
subset and randomly selected noise segments of type v. In the test-
ing stage, the “test” subset is combined with each of the three noise
sources for performance evaluation.

To quantify the classification performance, we use the HIT-FA
criterion, which has been shown to correlate well to human speech
intelligibility [1]. Here HIT represents the percentage of correctly
predicted speech-dominant T-F units while FA is the percentage of
wrongly predicted noise-dominant T-F units. To assess the perfor-
mance of the enhanced speech, we use the Perceptual Evaluation of
Speech Quality score (PESQ) [23] for evaluating the quality and the
Short-Time Objective Intelligibility measure (STOI) [24] for intelli-
gibility. PESQ ranges from 0.5 to 4.5, while STOI takes its value
between −1 and 1. Both measures are known to correlate well to
human perception. The higher the value, the better the performance.

To evaluate the performance of DNN in our proposed approach,
we compare two alternative classifiers: the simple thresholding (6)
and the linear SVM (LSVM), assuming that all classifiers use the
same set of features extracted from SNMF. Though kernel SVM gen-
erally achieves a better performance than LSVM, the high complex-
ity of kernel SVM makes it prohibitive in our setup, where both the
feature dimensionality and the number of samples are big. In SNMF
+ LSVM, while G̃n (7) remains as the feature, we train 64 LSVM-
s as the classifiers for the 64 channels [25]. Moreover, two other
classification-based systems proposed in Kim et al. [1] and Chen et
al. [11] are also compared. For Kim’s system, we use the values re-
ported in [9], and use the results reported in [11] (Table 1 and 2) for
Chen’s system. Both systems are compared because they also con-
sider a matched-noise condition and use similar front-end and back-
end structures.2 Therefore, we can focus on the influence of feature
extraction and classification. Further, to compare the quality and in-
telligibility of the enhanced speech, we implement a commonly-used
statistical-based algorithm by using the MMSE algorithm [26] for
noise tracking and the Log Short-Time Spectrum Amplitude (LST-
SA) estimator [2] for gain calculation. For notational convenience,
this algorithm is referred to as LSTSA.

3.2. Parameter Selection of the Proposed System
3.2.1. Parameters for Dictionary Training and Sparse Coding
The speech dictionary is trained by solving (2), where X is replaced
by the clean speech cochleagram S. The dictionary size Ms is set to
512, λ is set to 0.01, and ϵ is set to 10−5. We perform 500 iterations
of the multiplicative updates (3) and (4), which takes about 1 hour
when using a MATLAB implementation on a cluster computer.3

For each noise type v, the corresponding noise dictionary Dv

is trained by solving problem (2), where X is replaced by the noise
cochleagram. For different noise dictionaries, their sizes Mv are

2Chen’s system uses a 32-channel Gammatone filterbank in the analysis
front-end, and sets the LC value to −10 dB. [9] modifies Kim’s system to
use exactly the same front-end and back-end as ours.

3A Linux-based system with 8 Intel Sandy bridge E5-2670 processors
(2.6 GHz) and 64 GB memory.
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chosen according to the “complexity” of the corresponding noise
sources. For example we use the largest number of atoms for the
babble noise dictionary, as it is clearly the most complex one among
all three types of noises. Other parameters for the noise dictionary
training as well as the sparse coding are given in Table 1.

In (5), the regularization parameter β in each noise type is deter-
mined by first solving (5) for a large number of potential candidates4

of β, and then picking the one with the best separation performance
(or the smallest dIS(S | DsGs) + dIS(V | DvGv)). Interestingly,
the resulting β makes intuitive sense: when Mv is large, the corre-
sponding noise dictionary Dv is more likely to represent the speech.
As a result smaller β should be used so that the speech dictionary
can represent the speech source as much as possible.

Table 1. Parameters of noise dictionaries and sparse coding stage
Street Factory Babble

Mv in (2) 5 15 25
ϵ in (2) 10−5 10−5 10−5

β in (5) 0.15 0.04 0.02
ϵ in (5) 10−5 10−5 10−5

3.2.2. Parameters for DNN
We use a 5 layer ReLU network [19] with 3×M neurons in the in-
put layer, 1024 neurons in the 3 hidden layers, and 64 neurons in the
output layer. Here, M denotes the total number of dictionary atoms.
For example, the network used in babble noise has 3 × (512 + 25)
neurons in the input layer. The drop out probability [19] in the input
layer is set to 0.2, and it is changed to 0.5 in the hidden and output
layer. To avoid form diverging, we constraint the L∞ norm of the
network weight to be less than 0.1. 500 epoches is used for super-
vised training, which takes 30 hours to run on a cluster computer. 3

3.3. The Results
In Table 2, we present the classification performance under different
noise conditions at−5 dB SNR. The “x” means there is no available
data. The differences between these systems are the feature extrac-
tion step and/or the classification step. The front-end and back-end
are the same. The first three rows of Table 2 show a monotonic per-
formance improvement when the stronger classifier is used. When
the SNR is as low as −5 dB, SNMF itself is unable to produce a
reliable decomposition, and therefore SNMF+Thresholding cannot
deliver satisfactory result. When a classifier is used, we see a bet-
ter performance by using DNN than using LSVM. Also, it is clear
that the proposed system outperforms the system proposed by Chen
et al. and Kim et al. Our results also suggest that when the DNN
is used as the classifier, a simple SNMF based feature extraction is
sufficient for classification. Note that [10] also uses DNN for clas-
sification, but only the 0 dB scenario was considered, where most
normal-hearing listeners have near perfect recognition rate.

Fig. 2 evaluates the quality and the intelligibility of the enhanced
speech by different approaches. Audio samples are available at [27].
In terms of both PESQ and STOI, the proposed system outperform-
s the thresholding and the LSVM counterparts. This is consistent
with the results in Table 2. Compared to LSTSA, the proposed ap-
proach achieves a comparable speech quality to LSTSA. This is very
encouraging, as it shows that a classification-based system is capa-
ble of achieving high speech quality, although its primary target is
to improve the speech intelligibility. Further, we observe from Fig.
2(a) that the advantage of the proposed approach over LSTSA is
more pronounced when the noise becomes increasingly more non-
stationary (from “street” to “babble”). We attribute this to the use

4β ∈ [0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2, 0.3, 0.5]

Table 2. Classification results for different systems at −5 dB SNR
under 3 noise types. Bold faced letters denote the best result.

Street Factory Babble

Proposed
(SNMF+DNN)

HIT 86.5% 78.1% 75.8%
FA 12.9% 9.0% 13.9%

HIT-FA 73.6% 69.1% 61.9%

SNMF+LSVM
HIT 73.9% 65.7% 58.8%
FA 12.9% 11.4% 18.7%

HIT-FA 61.0% 54.3% 40.1%

SNMF+Thresholding
HIT 59.4% 35.3% 43.2%
FA 25.0% 17.5% 31.7%

HIT-FA 34.4% 17.8% 11.5%

Chen et al. [11]
HIT x 70% 62%
FA x 7% 13%

HIT-FA x 63% 49%

Kim et al. [1]
(from Table 1 of [9])

HIT x 57.3% 53.8%
FA x 26.7% 27.1%

HIT-FA x 30.6% 26.6%

street factory babble

0.8

1

1.2

1.4

1.6

1.8

 

 

(a) PESQ

street factory babble
0.3

0.4

0.5

0.6
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UN
LSTSA
SNMF+Thresholding
SNMF+LSVM
Prop (SNMF+DNN)

(b) STOI

Fig. 2. Performance comparison of the enhanced speech at −5 d-
B SNR under street, factory, and babble noises. “UN” denotes the
unprocessed noisy mixture. “LSTSA” denotes using LSTSA [2]
with MMSE noise variance tracking [26]. SNMF+Thresholding
and SNMF+LSVM denotes the system that uses the same structure
as the proposed system, but changes the classifiers from DNN to
thresholding and LSVM, respectively. All values are averaged over
300 randomly selected sentences from the “test” data set.

of SNMF in the feature extraction step, as this technique is known
to work well when the noise source contains distinct features, and is
robust to the non-stationarity [3–6]. Fig. 2(b) compares the speech
intelligibility of the enhanced speech. As expected, LSTSA is not
able to improve the speech intelligibility, while the proposed sys-
tem has a relatively significant improvement. This is consistent with
what is known in the literature, that traditional enhancement method-
s cannot improve speech intelligibility [8], while a properly trained
classification-based algorithm can [1, 9–11].

4. CONCLUSIONS AND FUTURE WORKS
In this paper, we present a novel method for classification-based
speech enhancement, which combines SNMF for feature extraction
and DNN for classification. The proposed system uses only limited
speech-specific knowledge, and is able to obtain a superior perfor-
mance in terms of both quality and intelligibility under three dif-
ferent types of non-stationary noise sources at −5 dB SNR. In the
current work, we only consider a matched-noise condition, in which
both the training and testing stages use the same noise type under
the same SNR. In future, we plan extending this work to unmatched-
noise conditions. It is also interesting to consider joint optimizing
both the NMF for feature extraction and the DNN for classification.
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