
EXPLICIT VERSUS IMPLICIT SOURCE ESTIMATION FOR BLIND MULTIPLE INPUT
SINGLE OUTPUT SYSTEM IDENTIFICATION

Austin J. Brockmeier and Jose C. Principe

University of Florida
Electrical and Computer Engineering

Gainesville, Florida

ABSTRACT

Sparsely-activated time series are found in many physical systems.

In these cases, the signals can be approximated by convolution of

sparse sources with a set of shift-invariant filters. When there is

access to only one sensor, such that there is a single observation sig-

nal, identifying the source signals appears to be an ill-posed prob-

lem, but for very sparse sources it is still possible to learn the sys-

tem. We discuss analysis techniques for sparsely activated signals,

which retrieve sparse sources given the filters, and identify condi-

tions when algorithms based on independent component analysis

(ICA) and sparse coding can blindly estimate filters from a single

noisy time-series. Many qualitative results have been made for learn-

ing shift-invariant bases on natural signals, but for a thorough under-

standing of the effect of sparsity, we quantitatively analyze results on

synthetic examples, comparing how ICA and shift-invariant sparse

coding approaches perform for multiple-source blind system identi-

fication.

Index Terms— blind channel estimation, dictionary learning,

ICA, sparse coding

1. INTRODUCTION

Sparsely-activated signals are evident in a number of natural sig-

nals: neural spike trains [1, 2, 3], electrocardiograms [4], and seis-

mic recordings. Signals such as these have two key distinctions:

they consist of the same waveforms appearing repeatedly—but only

occasionally—throughout the signal. These time-series signals can

be modeled as the sparse excitation of a single filter. A signal of this

form is known as shot noise. Mathematically, it corresponds to the

convolution of a train of Dirac delta functions, with possibly varying

amplitude, with a filter representing the system’s impulse response

[5].

Even more real-world signals are approximated by a combina-

tion of shot-noise processes—for example, recordings from an elec-

trode in the brain near multiple neurons. This summation of single-

source signals forms a multiple-input single-output (MISO) linear

system. In this system, each component has a unique filter, and

each source is assumed to be independently and sparsely excited.

This model can explain signals such as sound or electromagnetic

waves that are emitted in a passive physical environment with a lin-

ear medium.

The shot-noise model can be seen as a form of time-series anal-

ysis where the energy is not only temporally localized and sparsely

distributed, but also where the same waveform is recurrent through-

out the signal. By only recording the waveform index, amplitude,
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and timing—a so-called atomic decomposition [6]—this approach

provides significant compression. The atomic decomposition is only

useful if selected waveforms match the signal such that a good ap-

proximation of the whole signal, or a relevant component, can be

achieved with a limited number of atoms. Instead of using prede-

fined waveforms the filters of the MISO model can be learned di-

rectly from the data.

There are two problems entwined in this learning problem:

learning the dictionary—i.e., the set of filters—to represent the sig-

nal, and inferring the index, amplitude, and timing for the train of

Dirac deltas, corresponding to the unobserved sources. Together

these problems are known as blind deconvolution or blind system

identification.

This study’s primary contribution is the comparison of two dis-

tinct approaches for blind system identification with sparse sources.

The first approach is to assume a generative model for the signal,

with constraints in the form of sparse priors for the sources. Us-

ing a normal distribution for the noise, the optimal model is the one

that minimizes the least-squares reconstruction cost while comply-

ing with the sparsity constraint, or jointly maximizing the sparsity

of the source. Based on prior work in computational neuroscience,

this approach is often referred to as sparse coding [7]. A number

of researchers have shown how filters which describe natural signals

can be efficiently estimated directly from data [8, 9, 10, 11, 12]. In

particular, using matching-pursuit as a proxy for a maximum a pos-

terior estimate, an efficient algorithm for learning sparse bases [13]

has been extended to the time-series case [14, 15, 16]. In these cases

the sources must be explicitly estimated.

The second approach avoids the explicit estimation of the

sources. Instead the sparse sources’ statistical properties are used in

the filter estimation [17]. Essentially, this approach for blind estima-

tion uses a matrix-based projection pursuit, where windows of the

time series are treated as vectors in independent component analysis

(ICA) [18]. In this way, the filters can be blindly estimated without

estimating the sources or using a reconstruction cost function. Other

researchers [19, 20] have demonstrated the ability of FastICA [21]

to efficiently estimate the filters. FastICA is particularly suited for

this since its objective implicitly estimates the sources through a

non-linear function of the projected signals.

We perform experiments on synthetic data to compare shift-

invariant sparse coding and ICA across a range of source rates. We

consider the limiting case of a single source, which corresponds to

blind channel estimation [17]. The single-source case is an impor-

tant subproblem in some alternating estimation approaches wherein

the estimation of a single source is performed assuming the contri-

butions from all other sources have been removed.

The setting for these experiments is a single realization of rel-
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atively long (compared to the system’s impulse response) and the

sources are active throughout. This is different from ‘shift-invariant’

dictionary learning where multiple short segments are available and

only relatively short shifts are allowed [22].

2. MODELING SYSTEMS EXCITED BY SPARSE SIGNALS

Let x(t) be a signal is created by a multiple-input single-output

(MISO) linear system with sparse inputs observed in the presence

of noise:

x(t) = e(t) + x̂(t) = e(t) +
P
∑

p=1

yp(t) (1)

yp(t) =

∫ ∞

−∞

sp(t− u)ap(u)du, p = 1, . . . , P (2)

sp(t) =
∑

i

αp,iδ(t− τp,i), p = 1, . . . , P. (3)

Each component, yp(t), p = 1, . . . , P , is formed by convolving a

weighted train of delta functions sp(t) with a finite impulse response

filter ap(t).
The atomic representation of the noise-free signal, x̂(t), con-

sists of a set of source indices, amplitudes, and timings S =
{(pi, αi, τi)}i. Using this set, and the model signal can rewrit-

ten as:

x̂(t) =
∑

i

∫ ∞

−∞

αiδ(t− τi − u)api(u)du. (4)

3. MATCHING PURSUIT WITH K-SVD

Assuming that number of filters P and source excitations L are

known, the blind system identification problem can be posed as

a least-squares optimization over A = {ap(t)}
P
p=1 and S =

{(pi, αi, τi)}
L
i=1

min
A,S

J(A,S) =

∥

∥

∥

∥

∥

x(t)−

L
∑

i=1

αi

∫ ∞

−∞

δ(t− τi)api(u)du

∥

∥

∥

∥

∥

2

2

. (5)

Jointly solving for both A and S is difficult because of the depen-

dence between them.

AssumingA is fixed, a greedy solution to minS J(A,S) can be

found by using matching pursuit approach for time series. At each

iteration the solution is chosen as if only one source is active at only

one point in time, and selects a single atom, consisting of the timing,

amplitude, and waveform, that explains the most energy remaining

in the residual of the signal. This criterion is equivalent to finding

the filter with the highest normalized cross-correlation. At the end of

each iteration, the residual signal is updated by removing the single-

atom reconstruction. This updated residual is used as the input to the

next iteration. If after every step the amplitudes are re-estimated this

is known as orthogonal matching pursuit.

Given the atomic decomposition S = {(pi, αi, τi)}
L
i=1, either

the sources (deconvolution) or the individual components (demix-

ing) can be computed easily via Equation (3) or Equation (2), re-

spectively. How to identifyA is the main question. Mailhé et al. [15]

proposed an extension of the dictionary learning algorithm K-SVD

[13] to the case of finding A. This consists of an alternating op-

timization between (orthogonal) matching pursuit and K-SVD. For

conciseness, we refer to it as MP-SVD (OMP-SVD).

Let x denote the discrete time version of x(t). Following the no-

tation in [15], let Tτ denote the linear operator such that Tτv aligns

the M -length filter v within a N length signal. Tτ is a N ×M ma-

trix with the M ×M identity matrix as a submatrix starting at row

τ . The transpose of this operator is denoted T ∗
τ and is defined such

that T ∗
τ x extracts the M -length window from x starting at time τ .

Using the alignment operator Tτ the cost function can rewritten in

terms of vectors as

min
{vp}

P
p=1

,{(pi,αi,τi)}
L
i=1

∥

∥

∥

∥

∥

x−
L
∑

i=1

αiTτivpi

∥

∥

∥

∥

∥

2

2

. (6)

To update the filters, we first assume we have an estimate of the

components using the current filters. Let x(p) denote the signal con-

sisting only of the pth component and any error

x
(p) = e+ yp = x−

∑

q∈{1,...,P}\p

yq (7)

where yp =
∑

j∈Ip
αjTτjvp and Ip = {i : pi = p}. This single-

filter signal is used to update each filter, but because of the sparsity

in time, only windows of the signal corresponding to source timings

are used. These windows are collected into a matrix. The filter is

updated to the primary singular vector of this matrix, which mini-

mizes the least-squares error. As the timings may change with the

new filter, they are re-estimated and the is alternating optimization

problem continues.

To ameliorate the computational complexity of running match-

ing pursuit multiple times, we use a non-overlapping approximation

of time-series matching pursuit. As an approximation, we perform

only a single cross-correlation for each filter, and extract timings for

each source excitation that do not overlap with themselves (different

filters are allowed to overlap). Given the timings and filter indices,

the least-squares solution for the amplitudes is solved. Addition-

ally, this non-overlapping approximation can be run multiple times

in sequence, using the remaining residual from the previous run. As

an alternative we compare with the block-based approximation of

matching pursuit used in MoTif [23].

4. USING ICA FOR SPARSE MODELING

Using ICA to solve the blind deconvolution problem is motivated

by the following reasoning: first, linear filtering induces temporal

dependence in the resulting signal; consequently, a deconvolution

filter that minimizes this dependence should produce the original

signal—up to some indeterminacies. This is especially the case

when the source has independent, identically distributed entries. Its

well known that as long as the source is not Gaussian, then higher-

order statistics can be used to estimate the dependence. Sparse

sources are by definition not Gaussian.

The deconvolution filter is a demixing vector applied to a delay

line of the signal. If it exists, the optimal deconvolution filter is the

filter inverse or a lagged version of it. Unlike the standard case for

ICA, when there is single vector for each source, in the time-series

case there are many solutions to the single-channel deconvolution

problem corresponding to different shifts of the demixing vector.

Each shift corresponds to a minimum of the dependence measure

[17] and a solution to the deconvolution problem.

4.1. FastICA

In the FastICA algorithm [21], dependence is evaluated as an ap-

proximation of negenetropy [24]. Negentropy gauges the non-
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Gaussianity of a random variable in terms of its higher-order statis-

tics. Since a Gaussian random variable only has second-order statis-

tics these differences can be quantified by finding the expectation of

a non-quadratic function such that the moment expansion will con-

tain higher-order terms. The difference between these higher-order

and those of a Gaussian are used to assess the non-Gaussianity.

Approximately, the negentropy of the random variable u is pro-

portional to E{G(u)} − E{G(ν)} where G(·) is the contrast func-

tion and ν is a Gaussian random variable with the same mean and

covariance as u. For random vectors, maximizing the sum of the

negentropies, under the constraint of decorrelation, minimizes the

mutual information between the elements. This is basic principle of

contrast-function-based ICA approaches.

The optimization problem for single-unit FastICA is

argmax
‖wTΨ−1‖2=1

[

E
{

G(wT
x)

}

− E {G(ν)}
]2

, (8)

where w is the demixing vector, Ψ is the whitening matrix, and

G(·) is a suitably chosen contrast function [21]. For sparse sources,

the contrast function is typically a symmetric sub-quadratic function

such as G(u) = log cosh(u), which has the tanh(u) as its first

derivative.

While the vector w corresponds to a row of the demixing matrix,

it also corresponds to the inverse of the filter such that wT
x = ŝ is

a linear estimate of the source signal. The corresponding column of

the mixing matrix is denoted v and is related by v = E{xxT
w} =

E{xŝ}. Clearly, v is nothing more than the weighted average of

windows of the signal where the weighting assigned to each vector

corresponds to the estimated source value.

An approximate solution to the single-unit ICA problem (8)

yields an iterative update for w [21]:

w ← ΨTΨE
{

xg
(

w
T
x

)}

− E
{

g
′
(

w
T
x

)}

w, (9)

g(u) = ∂
∂u

G(u), and g′(u) = ∂
∂u

g(u). For G(u) = log cosh(u),
g(u) = tanh(u) is a soft activation function, and g′(u) = 1 −
tanh2(u) is a symmetric function that peaks at 0. In terms of the

mixing vector this update is

v ← E
{

xg (ŝ)− vg
′(ŝ)

}

. (10)

This matches the interpretation of v as a weighted average, but gives

an interpretation on its update. For a given realization, a large source

magnitude |ŝ| > 1 implies g(ŝ) ≈ sign(ŝ) and g(ŝ) ≈ 0, this yields

v ≈ x. When the source coefficient is smaller such that g′(ŝ) domi-

nates g(ŝ), the update moves the vector away from its current direc-

tion. Thus, single-unit FastICA uses a weighted average to estimate

the filter, wherein the source estimates correspond to source that is

maximally non-Gaussian.

For the single-source case it would seem unnecessary to use

more than on unit. In practice, using a multiple-unit approach with

more units than sources performs better. In the time-series setting,

the true mixing matrix is overcomplete, and the optimal vector for

the single-unit case (8) will not necessarily correspond to a column

of the matrix obtained for the multi-unit case.

4.2. Multiple source case

In the multiple source case, an ICA must resolve multiple demix-

ing vectors simultaneously. The projections that yield sparse values

correspond to demixing vectors for each source at each permissi-

ble lag. Since each source may have arbitrary lag, there is a even

greater number of solutions that maximize the measure of indepen-

dence. This can lead to the redundant estimation of the same filter

at different lags. The constraint on correlation that avoids degener-

ate solutions in instantaneous ICA is inadequate for the convolutive

case as different lags of the same source may be uncorrelated. For in-

stance, if the length of the demixing vectors is longer than the filter

extent, the ‘independence’ between filters can be found by simply

lagging the filters such that they do not overlap. Sets of demixing

vectors often include short filters at multiple shifts, or noisy spuri-

ous filters. Consequently, after running a multi-unit ICA, there is a

need to select a subset of the unique and ‘useful’ filters.

4.3. Post-hoc filter subset selection

Assuming the number of estimated filters is higher than the desired

(in either the single or multiple source case). The goal is to find the

optimal subset that minimizes the reconstruction cost. This prob-

lem has a combinatorial number of solutions, and we use a greedy

approach to find which set of filters best explains the signal.

The filters need to be correlated with the data, but not redundant

copies of each other. To do this, an approximation of the signal is

made with each individual filter using time-series matching pursuit.

Then these components are treated as the basis vectors, and orthog-

onal matching pursuit (OMP) [25] is used to select a subset of these

components to approximate the signal. In this manner, two filters

that are simply shifted versions of each other will not both be se-

lected, since their components will be approximately the same. Fur-

thermore, in this manner it is straightforward to use a model selection

criterion or cross-validation to select the total number of filters.

5. SYNTHETIC EXPERIMENTS

Experiments are conducted to compare two basic methodologies

for system identification: shift-invariant decomposition with mean-

square error cost, and single-channel ICA. The performance of

algorithms are gauged on both single-source filter estimation and

multiple source filter estimation. In both cases the true underlying

filters are chosen as a set of Daubechies 4 (db4) wavelet packets.

This ensures the synthetic filters cover a range of frequency space

with varying temporal characteristics.

For each run, an output signal with 10,000 samples was created

feeding sparse source signals through the MISO system. The wavelet

packets were windowed to be 180 time points long. The source sig-

nals are independent, marked point processes with a homogeneous

Poisson point process for the timing and a bimodal excitation ampli-

tude distribution. The excitation amplitude distribution is a mixture

of a Gaussian distributions with mean and variance of (1, 1
9
) and

(−1, 1
9
) and equiprobable Bernoulli mixing. In the experiments, the

rate of the Poisson process controls the sparsity of the sources. After

scaling the amplitude of the filters to have a norm of 180/2, zero-

mean, unit-variance white noise was added. This yielded signals

with reasonable signal-to-noise ratios.

The algorithms are run with the correct number of filters, but

they are not given the sparsity. Matching pursuit with either the

block-based or non-overlapping approximation assume a fixed cardi-

nality of the sources, based on how many blocks or non-overlapping

filters fit the length of the signal. For the single-channel ICA, Fas-

tICA with either single-unit or 40-unit symmetric estimation was

used. The tanh(·) activation function is used for both instances of

FastICA. In practice, most of the filters in the 40-unit estimation are

meaningless so the OMP-based filter selection is used to select the
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predefined number of filters. The choice of 40 was arbitrary, but it is

around one quarter of a full mixing matrix.

5.1. Single Source, Blind System Identification

For a single source, the source excitation rates between 0.1% and

50% were tested. For instance, at the rate of 0.55% each filter is

on average excited once every 180 samples, the same as its length.

Thus, this rate is a change point for the performance of MP-SVD

with the non-overlapping and block-based approximations.

For each run, the filter estimation performance is quantified as

the maximum correlation coefficient, across alignments, between the

estimated filter and the true filter. This quantity is averaged across

all 32 filters and the results are collected across 8 Monte Carlo gen-

erations of source and noise activity. The average computation time

for the estimation is also recorded. These results are shown in Fig. 1.
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Fig. 1. Single-source blind waveform estimation performance. The

average correlation coefficient across the 32 waveforms for each

method is recorded across 8 Monte Carlo runs. (Inset) The average

run time to estimate one waveform for each method.

At high and low excitation rates, MP-SVD achieves the best per-

formance. However, in the range of rates between 3% and 10%

multi-unit ICA outperforms the MP-SVD approach. Across spar-

sities, the 40-unit symmetric ICA estimation followed by the filter

selection outperforms the single-unit ICA estimation.

5.2. Multiple Source, Blind System Identification

A subset of 11 filters was chosen for the multiple source case. The

individual source excitation rate were varied between 0.025% and

10%. This corresponds to an overall rate of excitation between

0.275% and 110%.

For each run, the filter estimation performance is quantified us-

ing two indices: the first is the average of the correlation coefficient

of each estimated filter to its best-matched true filter, and the second

is the percentage of the true filters estimated with a correlation coef-

ficient greater than 0.9. The first measure penalizes spurious filters

that are not matched to any source. The second measure does not

penalize spurious filters.

The results for MP-SVD and the 40-unit symmetric ICA with

and without filter subset selection are shown in Fig. 2. The block-

based approximation was tested also, but in the multiple source case

the block-based approach failed.
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Fig. 2. Multiple waveform, single-channel blind estimation. The

average and standard-deviation of the performance measures across

10 Monte Carlo runs are shown as error-bars. (a) Average correlation

coefficient of estimated filters to their best-matched true filter. (b)

Percentage of the true filters matched (correlation coefficient >0.9).

The MP-SVD approaches achieves the highest performance at

select rates, with an average correlation above 0.7 for rates below

1%. The matching performance is more sensitive to the rate, with a

peak above 80%, but dropping to zero above 1%. ICA consistently

matches 60% of the filters at rates below 3%. The average best-

matched correlation coefficient is lower than MP-SVD at low rates,

but is consistent across a range of sparsity levels. The ICA-based

approach appears to have the best tradeoff in terms of speed and

consistent accuracy, as the runtime of MP-SVD is 9× higher.

5.3. Discussion

These results on synthetic data confirm that both single-channel ICA

and shift-invariant sparse coding are able to blindly estimate the un-

derlying filters of a sparsely-excited multiple-input single output sys-

tem. For cases of sparse sources, MP-SVD is the most accurate

for blind system identification for both SISO and MISO systems.

However, as the source cardinality of non-overlapping MP-SVD was

fixed, for higher rate sources its performance suffers. ICA’s avoid-

ance of explicit modeling allows it to perform better at higher source

rates.

On real signals, the true number of filters and their sparsity is

unknown. A model selection criterion can be used to determine the

optimal number of filters. For single-channel ICA this can be done

during the post-hoc filter selection, but the sparse coding approach

this would require the training of multiple models of varying com-

plexity. Single-channel ICA also avoids any pre-specification of the

sparsity of the sources. In the sparse coding case, this could also

be accomplished using model selection or a generative model able

to perform inference of the joint rate-amplitude distribution of each

source. These points highlight single-channel ICA with post-hoc fil-

ter selection as a viable approach to blindly estimate MISO systems

with sparse sources.
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