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ABSTRACT instrument (in their case: singing voice) in [12], they assume that the

This paper deals with the extraction of an instrument from musi(ﬁackground is one of 110 known karaoke songs. In contrast, we only
by using a deep neural network. As prior information, we only as- now the instrument types that appear in the mixture and, hence, we

sume to know the instrument types that are present in the mixtur@a"e to use a large instrument database with solo performances from

and, using this information, we generate the training data from arious musicians and instruments. From this database, we generate
database with solo instrument performances. The neural network{g.e training datra tha; aIIow_shushto ge_n_eral:jze to new m_|xtu_reshand
built up from rectified linear units where each hidden layer has thé™S |ns|trumtenft at%l\?lfle Wlﬁ\'tt ? tralrxng at?j gemter.ztl(t).n IS '; tﬁs a
same number of nodes as the output layer. This allows a least squafgigral part of our architecture. A second contribution of the

initialization of the layer weights and speeds up the training of the®@Per is the efficient training of the DNN: We propose a network

network considerably compared to a traditional random initializa-2"chitecture where each hiddeectified linear unit(ReLU) layer

tion. We give results for two mixtures, each consisting of three in12S the same number of nodes as the output layer. This allows a

struments, and evaluate the extraction performance using BSS EV§ASt Squares initialization of the network weights of each layer and,
for avaryil’wg number of hidden layers. P 9 using it as starting point for thiémited-memory BFG$L-BFGS)

optimizer, yields a quicker convergence to good network weights.
Index Terms— Deep neural network (DNN), Instrument extrac- Additionally, we noticed that this initialization often results in final
tion, Blind source separation (BSS) network weights which have a smaller training error than if we start
1. INTRODUCTION the training from randomly initialized weights as we find better local
minima.
The remainder of this paper is organized as follows: In Sec. 2
we describe in detail the DNN based instrument extraction where

In this paper, we study the extraction of a target instrumém} € R
from an instantaneous, monaural music mixtufe) € R, i.e., of a
mixture that can be written as

M in particular Sec. 2.1 explains the network structure, Sec. 2.2 shows
z(n) = s(n) + Z vi(n), (1) thg generation of the training data .and Sec. 2.3 details the Iayer-wise
p training procedure. In Sec. 3, we give results for two music mixtures,

each consisting of three instruments, before we conclude this paper
in Sec. 4 where we summarize our work and give an outlook of future
steps.

The following notation is used throughout this papedenotes

wherev; (n) is the time signal of théth background instrument and
the mixture consists thus in a total bf + 1 instruments. Fronz(n)
we want to extract an estimaén) of the target instrumend(n)

and, therefore, we can see instrument extraction as a special Caseaotftolumn vector anX a matrix where in particulak is the identity

the generablind source separatioBSS) problem [1,2]. Various i “The matrix transpose and Euclidean norm are denoted by
applications require such an estimaig:) ranging from Karaoke ﬁ?

systems which use a separation into a instruments and a vocal tra .)T and|\_.||, respectlvely. Furthermoreyax (x, y) is the element-
see [3, 4], to upmixing where one tries to obtain a multi-channe Ise maximum operation betweanandy, and|x| retums a vector
12T P g wr ith the element-wise magnitude valuesxof
version of the monaural mixtute(n), see [5, 6].
We propose aeep neural networkDNN) for the extraction of 2 DNN BASED INSTRUMENT EXTRACTION
the target instrument(n) from z(n) as DNNs have proved to work
very well in various applications and have gained a lot of interes2.1. General Network Structure
in the last years, especially for classification tasks in image proces$¥e will explain now the proposed DNN approach for extracting the
ing [7, 8] and for speech recognition [9]. We use the DNN in thetarget instrument(n) from the mixturez(n), which is also depicted
frequency domain to estimate a target instrument from the mixturén Fig. 1. The extraction is done in the frequency domain and it
i.e., we train the network such that we can think of it as a “denoiser’tonsists of the following three steps:

which converts the “noisy” mixture spectrogram to the “clean” in- .5 Feature vector generatiortWe use ashort-time Fourier trans-
strument spectrogram. For the training of the ngtwork, we only asgqrm (STFT) with (possibly overlapping) rectangular windows to
sume to know the instrument types of the target instrumenfand i 2nsform the mixture signak(n) into the frequency domain.

of the other background instruments(n), ... ,va(n), forexam- o0 ic frequency representation, we build a feature véctor

ple that we want to extract a piano from a mixture with a violin and RECHDL b ctacking th itud | ¢ th ¢

a horn. This is in contrast to other proposed DNN approaches f € y stacking the magnitude vaiues of the curren
ame and theC' preceding/succeeding frames whdregives the

BSS of music which are supervised in the sense that they assu ) s .
to have more knowledge about the signals [10-12]. Huang et. apumber of magnitude values per frame. The motivation for using

used in [11,12] a deep (recurrent) neural network for the separdtSC the2C neighboring frames is to provide the DNN with tem-
tion of two sources where the neural network is extended by a ﬁnﬁoral context that allows it to better extract the target instrument.
softmask layer to extract the source estimates and it is trained usi dease note that these context frames are chosen such that they are

a discriminative cost function that also tries to decrease the interfer- 1For convenience, we use in the following a simplified notatiad drop
ence by other sources. Whereas they only know the type of the targtie frame index fox, xy, s, X and~.

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 2135 ICASSP 2015



] <« — — — DNN with K ReLU layers — — — > ]
STFT ||| Z g ISTFT
> = Wa,ba f + ¢« |Wgk,bk & -
........ & z
8 €RE
N rescaled withy
- x € REC+DL
normalized byy
Mixture z(n) Magnitude STFT Magnitude STFT Recovered instrument
frames ofz(n) frames ofs(n) 3(n)
Fig. 1: Instrument extraction using a deep neural network
non-overlappin@ Finally, the input vector is normalized by a Instrument Nu:m\?;rafif()fggs Material length
scalary > 0 in order to make it independent of different amplitude (= Variations)
levels of the mixture:(n) wherev is the average Euclidean norm of Bassoon 18 144 hours
N e'Y g Cello 6 1.88 hours
the2C + 1 magnitude frames ix. Clarinet 14 1.15 hours
(b) DNN instrument extractionin a second step, the normalized ;‘;'nno g‘; 2'?3 283:2
STFT amplituc_it_a vectox is fed toa D_NN, which consists ok’ Saxophone 19 1.16 hours
layers withrectified linear unitgReLU), i.e., we have Trumpet 16 0.38 hours
Viola 13 1.61 hours
Xk4+1 = Max (kak +bk,0), k=1,... K 2) Violin 12 5.60 hours

wherex,, denotes the input to thieh layer and in particulax, is the
DNN inputx andx 41 the DNN outputs. Each ReLU layer has

nodes and the network weighfVy, by }x=1,... i are trained such  recordings of the particular instruments that occur in the mixture.
that the DNN outputs an estimateof the magnitude frame € R*  The easiest case is when we have recordings of the instrument that
of the target instrument from the mixture vector We can thus  we want to extract and of those that occur as background in the mix-
think of the DNN performing a denoising of the “noisy” mixture ture. The most difficult case is when we only know the type of the
input. DNNs with ReLU activation functions have shown very goodinstrument that we want to extract and do not have any knowledge
results, see for example [13, 14], and, as each layerZhhElden  about the background instruments that will appear in the mixture. In
units, this activation function will allow us to use a layer-wise leastthis paper, we assume that we know the instrument types of the tar-
squares initialization as will be shown in Sec. 2.3. get and background, e.g., we know that we want to extract a piano
(c) Reconstruction of the instrumertising the phase of the original from a mixture with a horn and a violin. Using this prior knowl-
mixture STFT and multiplying each DNN outpéitwith the energy edge is reasonable since for many songs, we either have metadata
normalizatiorry that was applied to the corresponding input vector,which provides information about the instruments that occur or, in
we obtain an estimate of the STFT of the target instrumény, case this information is missing, could be provided by the user. As
which we convert back into the time domain using an inverse STFWe only know the instrument types that appear in the mixture, we
[15]. Note that the DNN output, i.e., the magnitude frames of the built a musical instrument database, see Table 1 for the details. The
target instrument, will be overlapping as shown in Fig. 1 if the STFTMusic pieces are stored in tfree lossless audio cod¢ELAC) for-

in the first stef{a) was also using overlapping windows. Please refermat with a sampling rate ofSkHz and contain solo performances

Table 1. Instrument database

to [15] for the ISTFT in this case. of the instruments. For each instrument type we have several files
stemming from different musicians with different instruments play-
2.2. Training Data Generation ing classical masterpieces. These variations are important as we only

In order to train the weight{Wi,b1},...,{Wg,bg} of the  know the instrument types and, hence, the DNN should generalize
DNN, we need a training sétx”, s },_, __ p of P input/target well to new instruments of the same type.

pairs wherex(®?) ¢ RCHL g g magnitude vector of the mixture For the DNN training, we first load from the instrument database

with C preceding/succeeding frames asid) € R’ the corre- all audio files of the instruments that occur in the mixture and resam-

sponding magnitude vector of the target instrument that we want tB/€ them to a lower DNN system sampling rate, where the sampling
extract. rate is chosen such that the computational complexity of the total

In general, there are several possibilities to generate the requirdg\N system is reduced. In a second step, we convert all signals into
material for the DNN training, which differ in the prior knowledge the frequency domain using a STFT and randomly sample from the
that we havé& For the target instrument(n), we either only know target and background instrumeritsomplex-valued STFT vectors
the instrument type (e.g., piano) or we have recordings from it. Fo»{é‘l), e ,§<P)} and{\”/l(,l), R GEP)} withi = 1,..., M where
the background instrumenis(n), we either have no knowledge, we _,,, c Co+1L and‘?gp) € CCCHIL e they also contain the

know the instrument types that occur in the mixture or we even havgc neighboring frames. These are now combined to form the DNN
2E.g., if the STFT uses a overlap 8%, then we only take every second input/targets, i.e.,

frame to build the feature vectar.
SBeside the discussed cases, there is also the possibiditywth have x®
knowledge about the melody of the target instrument, see fonele [16]. ~(P)

: (32)

M
a®Ps® + Z agp){,l(p)
i=1

2136



(3b) These two steps are doféetimes in_order toresultina netvv_ork wit_h
K RelLU layers. Finally, after adding all layers, we do a fine tuning
of the complete network, where we again use L-BFGS.
Using this procedure, we train the DNN as a denoising network
as each layer, when it is added to the network, tries to recover the
is a selection matrix which is used to select the center frameriginal targetss(P) from the output of the previous layer. This is

S )g(?)

O

wherey® > 0 is the average Euclidean norm of € + 1 magni-
tude frames ina®s® + M P3| ands e REXGCHDL

i

of ¥, ie, 8 = [0 --- 0 I 0 --- 0]. The scalars similar to stacked denoising autoencoders, see [20, 21]. In our ex-
a® o\P .7a§§> denote the random amplitudes of each instru-Periments, we have noticed that using the least squares initialization
ment which stem from a uniform distribution with suppfsro1, 1]. is advantageous with respect to the following two aspects if com-

The normalizationy®) is used to yield a DNN input that is inde- pared to a random initialization: First, it reduces the training time
pendent of different amplitude levels of the mixture. Please notel" thedn.et.v.volrk clon5|d((ejrably aso\llve st?rt ths Lr;BFGSdoptlmlzherfrorﬁ
however, that each instrument inside the mixture has a differerft 9900 Initial value and, second, we found that we do not have the
amplitudea(p),agp), B .’a%})’ i.e.. the DNN learns to extract the problem of converging to poor local minima which was sometimes

target instrument even if it has a varying amplitude compared to th(tghe case for the random initialization. In the next section, we will
background instruments, how the benefit of using the proposed initialization.

2.3. DNN Training 3. SEPARATION RESULTS

Using the dataset that we generated as outlined above, we can ledithe following, we will now give results for the proposed DNN ap-

the network weights such that tisem-of-squared erroréSSE) be- ~ proach. We consider two monaural music mixtures from the TRIOS

tween theP targetss and the DNN output§® is minimized. datas.et. [22], each comppsed of threg ipstruments: the .“Brah.ms“. trio
Due to the special network structure and the use of ReLU (Cfpon5|st|ng of a horn, a piano and a violin and the “Lussier” trio with

Sec. 2.1), we can perform a layer-wise training of the DNN. Eactf* P2ssoon, a piano and a trumpet. _

time a new layer is added, we first initialize the weights using least We use the following settings for our experiments: The DNN

squares estimates ¥, andb;, by neglecting the nonlinear rectifier System sampling rate (cf. Sec. 2.2) was chosen t82éiz which

function. As the target vectors?) are non-negative, we know that 'S @ compromise between the audio quality of the extracted instru-

the SSE after adding the ReLU activation function can not increasg'€nt and the DNN training time. For each frame, we have 513

and, hence, using the least-squares solution as initialization resulfggnitude values and we augment the input vecto€by- 3 pre-

in a good starting point for the L-BFGS solver that we then use. |feding/succeeding frames in order to provide temporal context to the

the following, we will now describe in more details the two steps PNN- Hence, one DNN input vector has a length of2C + 1)L =
that we perform if a new layer is added: 3591 elements and corresponds2®4 milliseconds of the mixture

signal. For the training, we usB = 10° samples and the gen-

erated training material has thus a length6af2 hours. During

the layerwise training, we ug0 L-BFGS iterations for each new

it +init ) P ) (0 2 layer and the final fine tuning consists 300 additional L-BFGS

{Wi, by} = arg min > HS - (kak + bk) H (4)  iterations for the complete network such that in total we execute
BER =1 5 - 600 + 3000 = 6000 L-BFGS iterations.

wherex ") denotes either theth DNN input fork = 1 orthe output ~__ 1able 2 shows the BSS Eval values [23], i.e., 8ignal-to-
of the (k — 1)th layer ifk > 1. Using (4), we choose the initial distortion ratio(SDR),signal-to-interference rati¢SIR) andsignal-

weights of the network such that they are the optimal linear |east[o-a_rtifact ratio (SAR) values after the additi_on of each ReLU layer.
squares reconstruction of the targéép)}pzl - from the fea- Besides the raw DNN outputs, we also give the BSS Eval values

e ST e if we use a Wiener filter to combine the DNN outputs of the three
tures{x;”"}p=1,...p. As we know that all elements of the target jnsiryments. This additional post-processing step allows an en-
vectors?) are non-negative, it is obvious that the total error can nohancement of the source separation results since, from the raw DNN
increase by adding the ReLU activation function and, therefore, thigutputs, it computes for each instrument a softmask and applies
initialization is a good starting point for the iterative training in stepit to the original mixture spectrogram. Looking at the results in

(b). The least squares problem (4) can be solved in closed-form anthble 2, we can see that there is a noticeable improvement when

(a) Weight initialization:For thekth layer, we solve the optimization
problem

the solution is given by adding the first three layers but the difference becomes smaller for
wit — C,,Col, b — 5 — Wiltx,, (5)  additional layers. For “Brahms”, the best results are obtained after
with adding all five layers and performing the final fine tuning. This is

different for “Lussier”: For the trumpet, we can see that the network

C. — XP: (S<p) _ ,) (X<p) _ ),{k)T is starting to overfit to the training set when adding more than three
5 k ’ layers as the SDR/SIR values start to decrease. The problem is the
p=1 limited amount of material for the trumpe2d.5 minutes of solo
P @ - @ - \T performances, see Table 1), which is too small. Interestingly, also
Cow = Z (Xk - Xk) (Xk - Xk) ) the DNNs for the other two instruments start to overfit which is

]
I
—

probably also due to the trumpet in the mixture. From the results we

ands = 537 s® %, = L7 <) can conclude that having sufficient material for each instrument is
p=1 P p=17k vital if only the instrument type is known since only this ensures a

(b) L-BFGS training: Starting from the initializatior{a), we use a  good source separation quality and avoids overfitting.

L-BFGS training with the SSE cost function to update the complete  Taple 3 shows for comparison the BSS Eval results for three

network, i.e., to updatéWi, b1}, ..., {Wi, by }. unsupervised NMF based source separation approaches:

4We also tested the weighted Euclidean distance [19] as wetigood e “MFCC kmeans [17]": This approach uses a Mel filter bank
results for speech enhancement. However, we could not seepavement of size30 which is applied to the frequency basis vectors of the
and therefore use the SSE cost function in the following. NMF decomposition in order to compute MFCCs. These are
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H Instrument  Output After 1st layer After 2nd layer 42 After 3rd layer J After 4th layer ‘L After 5th layer SJ After fine tuning
SDR SIR SAR| SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR AR SDR SIR AR
Homn Raw output 3.30 4.79 9.9 5.15 819 8[3 529 850 869 5386 88.69| 553 9.19 8.475.70 9.57 8.44
» WF output| 4.05 5.63 10.26 6.36 10.20 9.p8 6.51 10.81 $.87 61%B99 8.87| 6.71 11.44 8.796.80 11.68 8.79
_g Piano Raw outputf 0.85 1.93 9.5 234 437 7p7 316 6.60 6.64 3.261 66.82| 3.34 686 6.713.47 7.34 6.51
© WFoutput| 2.62 454 841 413 753 749 436 9.07 666 4403 9.8.67| 447 941 6.624.68 10.13 6.54
o Violin Raw output —0.23 1.88 6.11] 3.06 9.52 4.3 3.49 921 533 350 9.23 5.347 3%44 5.33|3.90 10.34 541
WFoutput| 3.62 857 586 5.27 1410 6.05 6.04 1519 6.74 6.@30l 6.76/ 6.02 15.36 6.686.11 15.60 6.75
Bassoon Raw outputf 3.05 5.48 7.82 347 651 7.2 3.62 7.00 7.07 3.684 77.04]3.72 7.31 6.96/ 3.39 7.08 6.6(
o WFoutput| 438 755 794 440 938 6.53 436 9.71 6.3042 9.75 6.36| 434 975 6.2p 392 9.37 585
-% Piano Raw output 157 330 8.08 1.69 4.06 6Pp0 1.87 421 7.08 1981 47.06] 1.93 438 692197 465 6.61
2 WFoutput| 3.12 6.07 7.14 333 6.60 6.95 323 644 32 6.64 6.89) 3.27 6.69 6.7p 299 6.64 6.49
- Trumpet Raw outputf 5.01 937 7.4 6.28 11.26 8]b.61 11.67 851 6.56 1154 852 655 1157 8J49 6.38 11.49 §.27
p WF output| 6.00 10.18 8.49 7.14 12.86 8./¥.38 13.55 8.77| 7.23 13.43 8.62 7.22 13.49 8/58 7.23 13.54 8§57

Table 2: BSS Eval results for DNN instrument extraction (“Brahms” and “lies4rio, all values are given in dB)

Instrument MFCC kmeans [17] Mel NMF [17] Shifted-NMF [18] DNN with WF

SDR SIR SAR SDR SIR SAR| SDR SIR SAR SDR SIR SAR
" Horn 3.87 5.76 9.41 4.17 5.83 10.17 2.95 3.34 15(26.80 11.68 8.79
g Piano 3.30 4.42 10.7¢ —0.10 0.21 14.39 3.78 5.59 9.50 4.68 10.13 6.54
[ Violin —8.35 —7.89 10.21| 9.69 19.79 10.19 7.66 1096 10.74 6.11 15.60 6.[f5
@  “Average| —0.39° ~0.76 10.13[ ~ 459 ~ 861 1158 480 663 11[85.86 1247 7.36
. Bassoon 1.85 11.67 2.61 0.15 0.75 11[72-0.83 —0.60 15.43| 3.92 9.37 5.85
% Piano 4.66 6.28 10.64 4.56 8.00 7.83 2.54 5.14 716 299 6.64 6]29
% Trumpet| —1.73 —1.29 12.18| 8.46 1812 9.05 6.57 739 1495 7.23 1354 847
- "Averagé| 159 ~ 555 848 439 896 953 ~ 2.76° 398 125B71 9.85  6.90 ||

Table 3: Comparison of BSS Eval results (all values are given in dB)

then clustered vidmeans. For the Mel filter bank, we use the T T T \ \ :
implementation [24] of [25]. 0.22 3 3 3 £ _ ﬁ';‘rrr‘f i
e “Mel NMF [17]": This approach also applies a Mel filter bank T 8 ® 2 — = Violin
of size30 to the original frequency basis vectors and uses a sec _ 02 % g g £ i
ond NMF to perform the clustering. 5 018 s Ef E‘i § i
e “Shifted-NMF [18]": For this approach, we use a constant Q s | | | |
transform matrix with minimal frequency5 Hz and 24 fre- g 016l ! | | |
quency bins per octave. The shifted-NMF decomposition is al- € :‘!\ : : :
lowed to use a maximum @# shifts. The constant Q transform g 014} “,‘\\ | | |
source code was kindly provided by D. FitzGerald and we use'c—é RN \ ! !
the Tensor toolbox [26,27] for the shifted-NMF implementation. 5 012 TN ‘ “
The best SDR values in Table 3 are emphasized in bold face an | g \ B e e B |
we can observe that, although our DNN approach not always give % R : T
the best individual SDR per instrument, it has the best average SDI o5l & | T T ]
for both mixtures since it is capable of extracting three sources witt o L L L L T TTmme-
600 1200 1800 2400 3000 6000

similar quality. This is not the case for the NMF approaches which Number of L-BFGS iterations
have one instrument with a low SIR value, i.e., one instrument that Fig. 2: Evolution of training error for “Brahms”

is not well separated from the othérs. e . . .
npaselme initialization, then a simulation showed that it would have

e " er 0 e hebencl o e eaet e el orven us 550 adonal L BFGS feratons 0 reach the eror vlue
. P () a2 P y(p) )12 of the least squares initialization. These L-BFGS iterations can be
training error/ = (3_,_, [|s"” —8™|°) /(30,1 8" = Sx™[I)  gayed and, therefore, we converge much faster to a network with a
whereS is the selection matrix from Sec. 2.2. The denominator ofyood instrument extraction performance.
J gives the SSE of a baseline system where the DNN is perform-
ing an identity transform. From Fig. 2 we can see that the error is 4. CONCLUSIONS AND FUTURE WORK
significantly decreased whenever a new layer is added as the errprthis paper, we used a deep neural network for the extraction of an
J exhibits downward “jumps”. These “jumps” are due to the leastinstrument from music. Using only the knowledge of the instrument
squares initialization of the network weights. For example, considetypes, we generated the training data from a database with solo in-
the training error in Fig. 2 of the network that extracts the piano:strument performances and the network is trained layer-wise with a
When the first layer is added, we have an initial errodof 0.23, least-squares initialization of the weights.
which means that, using the least squares initialization from Sec. 2.3, During our experiments, we noticed that the material length and
we start from a four times smaller error compared to the baselinguality of the solo performances is important as only sufficient ma-
initialization Wi = S andb" = 0. Would we have used the terial allows the neural network to generalize to new, i.e., before
5please note that the considered NMF approaches are onlgiagsto ~ Unseen, instruments. We therefore plan to incorporate _the “RWC
know the number of sources, i.e., they use less prior knowletign our ~ Music Instrument Sounds” database [29] as it contains high quality
DNN approach. We also tried the supervised NMF approach [28ifwhere ~ Samples from many instruments. Furthermore, our data generation
the frequency basis vectors are pre-trained on our instruidegabase. How- ~ process in Sec. 2.2 currently does not exploit music theory when
ever, this supervised NMF approach resulted in significamse’SDR values ~ generating the mixtures and we think that, taking such knowledge
as the learned frequency bases for the instruments areatedethich intro-  into account, should generate training data that is better suited for
duces interference. the instrument extraction task.
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