
DEEP NEURAL NETWORK BASED INSTRUMENT EXTRACTION FROM MUSIC

Stefan Uhlich1, Franck Giron1 and Yuki Mitsufuji2

1 Sony European Technology Center (EuTEC), Stuttgart, Germany
2 Sony Corporation, Audio Technology Development Department, Tokyo, Japan

ABSTRACT

This paper deals with the extraction of an instrument from music
by using a deep neural network. As prior information, we only as-
sume to know the instrument types that are present in the mixture
and, using this information, we generate the training data from a
database with solo instrument performances. The neural network is
built up from rectified linear units where each hidden layer has the
same number of nodes as the output layer. This allows a least squares
initialization of the layer weights and speeds up the training of the
network considerably compared to a traditional random initializa-
tion. We give results for two mixtures, each consisting of three in-
struments, and evaluate the extraction performance using BSS Eval
for a varying number of hidden layers.

Index Terms— Deep neural network (DNN), Instrument extrac-
tion, Blind source separation (BSS)

1. INTRODUCTION
In this paper, we study the extraction of a target instruments(n) ∈ R

from an instantaneous, monaural music mixturex(n) ∈ R, i.e., of a
mixture that can be written as

x(n) = s(n) +
M
∑

i=1

vi(n), (1)

wherevi(n) is the time signal of theith background instrument and
the mixture consists thus in a total ofM+1 instruments. Fromx(n)
we want to extract an estimatês(n) of the target instruments(n)
and, therefore, we can see instrument extraction as a special case of
the generalblind source separation(BSS) problem [1, 2]. Various
applications require such an estimateŝ(n) ranging from Karaoke
systems which use a separation into a instruments and a vocal track,
see [3, 4], to upmixing where one tries to obtain a multi-channel
version of the monaural mixturex(n), see [5,6].

We propose adeep neural network(DNN) for the extraction of
the target instruments(n) from x(n) as DNNs have proved to work
very well in various applications and have gained a lot of interest
in the last years, especially for classification tasks in image process-
ing [7, 8] and for speech recognition [9]. We use the DNN in the
frequency domain to estimate a target instrument from the mixture,
i.e., we train the network such that we can think of it as a “denoiser”
which converts the “noisy” mixture spectrogram to the “clean” in-
strument spectrogram. For the training of the network, we only as-
sume to know the instrument types of the target instruments(n) and
of the other background instrumentsv1(n), . . . , vM (n), for exam-
ple that we want to extract a piano from a mixture with a violin and
a horn. This is in contrast to other proposed DNN approaches for
BSS of music which are supervised in the sense that they assume
to have more knowledge about the signals [10–12]. Huang et. al.
used in [11, 12] a deep (recurrent) neural network for the separa-
tion of two sources where the neural network is extended by a final
softmask layer to extract the source estimates and it is trained using
a discriminative cost function that also tries to decrease the interfer-
ence by other sources. Whereas they only know the type of the target

instrument (in their case: singing voice) in [12], they assume that the
background is one of 110 known karaoke songs. In contrast, we only
know the instrument types that appear in the mixture and, hence, we
have to use a large instrument database with solo performances from
various musicians and instruments. From this database, we generate
the training data that allows us to generalize to new mixtures and
this instrument database with the training data generation is thus a
integral part of our DNN architecture. A second contribution of the
paper is the efficient training of the DNN: We propose a network
architecture where each hiddenrectified linear unit(ReLU) layer
has the same number of nodes as the output layer. This allows a
least squares initialization of the network weights of each layer and,
using it as starting point for thelimited-memory BFGS(L-BFGS)
optimizer, yields a quicker convergence to good network weights.
Additionally, we noticed that this initialization often results in final
network weights which have a smaller training error than if we start
the training from randomly initialized weights as we find better local
minima.

The remainder of this paper is organized as follows: In Sec. 2
we describe in detail the DNN based instrument extraction where
in particular Sec. 2.1 explains the network structure, Sec. 2.2 shows
the generation of the training data and Sec. 2.3 details the layer-wise
training procedure. In Sec. 3, we give results for two music mixtures,
each consisting of three instruments, before we conclude this paper
in Sec. 4 where we summarize our work and give an outlook of future
steps.

The following notation is used throughout this paper:x denotes
a column vector andX a matrix where in particularI is the identity
matrix. The matrix transpose and Euclidean norm are denoted by
(.)T and‖.‖, respectively. Furthermore,max (x,y) is the element-
wise maximum operation betweenx andy, and|x| returns a vector
with the element-wise magnitude values ofx.

2. DNN BASED INSTRUMENT EXTRACTION

2.1. General Network Structure
We will explain now the proposed DNN approach for extracting the
target instruments(n) from the mixturex(n), which is also depicted
in Fig. 1. The extraction is done in the frequency domain and it
consists of the following three steps:

(a) Feature vector generation:We use ashort-time Fourier trans-
form (STFT) with (possibly overlapping) rectangular windows to
transform the mixture signalx(n) into the frequency domain.
From this frequency representation, we build a feature vector1

x ∈ R
(2C+1)L by stacking the magnitude values of the current

frame and theC preceding/succeeding frames whereL gives the
number of magnitude values per frame. The motivation for using
also the2C neighboring frames is to provide the DNN with tem-
poral context that allows it to better extract the target instrument.
Please note that these context frames are chosen such that they are

1For convenience, we use in the following a simplified notationand drop
the frame index forx,xk, s, x̂ andγ.

2135978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

Mixture x(n)

...

STFT

...
Magnitude STFT
frames ofx(n)

D
N

N
in

pu
t

x ∈ R
(2C+1)L

normalized byγ

W1,b1 W2,b2 · · · WK ,bK

DNN with K ReLU layers

D
N

N
ou

tp
ut

ŝ ∈ R
L

rescaled withγ

...
Magnitude STFT
frames of̂s(n)

ISTFT

...

Recovered instrument
ŝ(n)

Fig. 1: Instrument extraction using a deep neural network

non-overlapping2. Finally, the input vectorx is normalized by a
scalarγ > 0 in order to make it independent of different amplitude
levels of the mixturex(n) whereγ is the average Euclidean norm of
the2C + 1 magnitude frames inx.

(b) DNN instrument extraction:In a second step, the normalized
STFT amplitude vectorx is fed to a DNN, which consists ofK
layers withrectified linear units(ReLU), i.e., we have

xk+1 = max (Wkxk + bk,0) , k = 1, . . . ,K (2)

wherexk denotes the input to thekth layer and in particularx1 is the
DNN inputx andxK+1 the DNN output̂s. Each ReLU layer hasL
nodes and the network weights{Wk,bk}k=1,...,K are trained such
that the DNN outputs an estimateŝ of the magnitude frames ∈ R

L

of the target instrument from the mixture vectorx. We can thus
think of the DNN performing a denoising of the “noisy” mixture
input. DNNs with ReLU activation functions have shown very good
results, see for example [13, 14], and, as each layer hasL hidden
units, this activation function will allow us to use a layer-wise least
squares initialization as will be shown in Sec. 2.3.

(c) Reconstruction of the instrument:Using the phase of the original
mixture STFT and multiplying each DNN outputŝ with the energy
normalizationγ that was applied to the corresponding input vector,
we obtain an estimate of the STFT of the target instruments(n),
which we convert back into the time domain using an inverse STFT
[15]. Note that the DNN outputŝs, i.e., the magnitude frames of the
target instrument, will be overlapping as shown in Fig. 1 if the STFT
in the first step(a) was also using overlapping windows. Please refer
to [15] for the ISTFT in this case.

2.2. Training Data Generation
In order to train the weights{W1,b1}, . . . , {WK ,bK} of the
DNN, we need a training set{x(p), s(p)}p=1,...,P of P input/target
pairs wherex(p) ∈ R

(2C+1)L is a magnitude vector of the mixture
with C preceding/succeeding frames ands(p) ∈ R

L the corre-
sponding magnitude vector of the target instrument that we want to
extract.

In general, there are several possibilities to generate the required
material for the DNN training, which differ in the prior knowledge
that we have3: For the target instruments(n), we either only know
the instrument type (e.g., piano) or we have recordings from it. For
the background instrumentsvi(n), we either have no knowledge, we
know the instrument types that occur in the mixture or we even have

2E.g., if the STFT uses a overlap of50%, then we only take every second
frame to build the feature vectorx.

3Beside the discussed cases, there is also the possibility that we have
knowledge about the melody of the target instrument, see for example [16].

Instrument Number of files Material length
(=̂ Variations)

Bassoon 18 1.44 hours
Cello 6 1.88 hours

Clarinet 14 1.15 hours
Horn 14 0.82 hours
Piano 89 6.12 hours

Saxophone 19 1.16 hours
Trumpet 16 0.38 hours

Viola 13 1.61 hours
Violin 12 5.60 hours

Table 1: Instrument database

recordings of the particular instruments that occur in the mixture.
The easiest case is when we have recordings of the instrument that
we want to extract and of those that occur as background in the mix-
ture. The most difficult case is when we only know the type of the
instrument that we want to extract and do not have any knowledge
about the background instruments that will appear in the mixture. In
this paper, we assume that we know the instrument types of the tar-
get and background, e.g., we know that we want to extract a piano
from a mixture with a horn and a violin. Using this prior knowl-
edge is reasonable since for many songs, we either have metadata
which provides information about the instruments that occur or, in
case this information is missing, could be provided by the user. As
we only know the instrument types that appear in the mixture, we
built a musical instrument database, see Table 1 for the details. The
music pieces are stored in thefree lossless audio codec(FLAC) for-
mat with a sampling rate of48kHz and contain solo performances
of the instruments. For each instrument type we have several files
stemming from different musicians with different instruments play-
ing classical masterpieces. These variations are important as we only
know the instrument types and, hence, the DNN should generalize
well to new instruments of the same type.

For the DNN training, we first load from the instrument database
all audio files of the instruments that occur in the mixture and resam-
ple them to a lower DNN system sampling rate, where the sampling
rate is chosen such that the computational complexity of the total
DNN system is reduced. In a second step, we convert all signals into
the frequency domain using a STFT and randomly sample from the
target and background instrumentsP complex-valued STFT vectors
{

s̃(1), . . . , s̃(P)
}

and
{

ṽ
(1)
i , . . . , ṽ

(P)
i

}

with i = 1, . . . ,M where

s̃(p) ∈ C
(2C+1)L andṽ(p)

i ∈ C
(2C+1)L, i.e., they also contain the

2C neighboring frames. These are now combined to form the DNN
input/targets, i.e.,

x
(p) =

1

γ(p)

∣

∣

∣

∣

∣

α(p)
s̃
(p) +

M
∑

i=1

α
(p)
i ṽ

(p)
i

∣

∣

∣

∣

∣

, (3a)

2136

s
(p) =

α(p)

γ(p)
S

∣

∣

∣
s̃
(p)

∣

∣

∣
, (3b)

whereγ(p) > 0 is the average Euclidean norm of the2C+1 magni-

tude frames in
∣

∣

∣
α(p)s̃(p) +

∑M

i=1 α
(p)
i ṽ

(p)
i

∣

∣

∣
andS ∈ R

L×(2C+1)L

is a selection matrix which is used to select the center frame
of s̃(p), i.e., S =

[

0 · · · 0 I 0 · · · 0
]

. The scalars

α(p), α
(p)
1 , . . . , α

(p)
M denote the random amplitudes of each instru-

ment which stem from a uniform distribution with support[0.01, 1].
The normalizationγ(p) is used to yield a DNN input that is inde-
pendent of different amplitude levels of the mixture. Please note,
however, that each instrument inside the mixture has a different
amplitudeα(p), α

(p)
1 , . . . , α

(p)
M , i.e., the DNN learns to extract the

target instrument even if it has a varying amplitude compared to the
background instruments.

2.3. DNN Training
Using the dataset that we generated as outlined above, we can learn
the network weights such that thesum-of-squared errors(SSE) be-
tween theP targetss(p) and the DNN outputŝs(p) is minimized4.

Due to the special network structure and the use of ReLU (cf.
Sec. 2.1), we can perform a layer-wise training of the DNN. Each
time a new layer is added, we first initialize the weights using least
squares estimates ofWk andbk by neglecting the nonlinear rectifier
function. As the target vectorss(p) are non-negative, we know that
the SSE after adding the ReLU activation function can not increase
and, hence, using the least-squares solution as initialization results
in a good starting point for the L-BFGS solver that we then use. In
the following, we will now describe in more details the two steps
that we perform if a new layer is added:

(a) Weight initialization:For thekth layer, we solve the optimization
problem

{Winit
k ,binit

k } = arg min
Wk,bk

P
∑

p=1

∥

∥

∥
s
(p) −

(

Wkx
(p)
k + bk

)
∥

∥

∥

2

(4)

wherex(p)
k denotes either thepth DNN input fork = 1 or the output

of the (k − 1)th layer if k > 1. Using (4), we choose the initial
weights of the network such that they are the optimal linear least
squares reconstruction of the targets{s(p)}p=1,...,P from the fea-
tures{x(p)

k }p=1,...,P . As we know that all elements of the target
vectors(p) are non-negative, it is obvious that the total error can not
increase by adding the ReLU activation function and, therefore, this
initialization is a good starting point for the iterative training in step
(b). The least squares problem (4) can be solved in closed-form and
the solution is given by

W
init
k = CsxC

−1
xx , b

init
k = s̄−W

init
k x̄k, (5)

with

Csx =
P
∑

p=1

(

s
(p) − s̄

)(

x
(p)
k − x̄k

)T

,

Cxx =
P
∑

p=1

(

x
(p)
k − x̄k

)(

x
(p)
k − x̄k

)T

,

ands̄ = 1
P

∑P

p=1 s
(p), x̄k = 1

P

∑P

p=1 x
(p)
k .

(b) L-BFGS training:Starting from the initialization(a), we use a
L-BFGS training with the SSE cost function to update the complete
network, i.e., to update{W1,b1}, . . ., {Wk,bk}.

4We also tested the weighted Euclidean distance [19] as it showed good
results for speech enhancement. However, we could not see an improvement
and therefore use the SSE cost function in the following.

These two steps are doneK times in order to result in a network with
K ReLU layers. Finally, after adding all layers, we do a fine tuning
of the complete network, where we again use L-BFGS.

Using this procedure, we train the DNN as a denoising network
as each layer, when it is added to the network, tries to recover the
original targetss(p) from the output of the previous layer. This is
similar to stacked denoising autoencoders, see [20, 21]. In our ex-
periments, we have noticed that using the least squares initialization
is advantageous with respect to the following two aspects if com-
pared to a random initialization: First, it reduces the training time
for the network considerably as we start the L-BFGS optimizer from
a good initial value and, second, we found that we do not have the
problem of converging to poor local minima which was sometimes
the case for the random initialization. In the next section, we will
show the benefit of using the proposed initialization.

3. SEPARATION RESULTS
In the following, we will now give results for the proposed DNN ap-
proach. We consider two monaural music mixtures from the TRIOS
dataset [22], each composed of three instruments: the “Brahms” trio
consisting of a horn, a piano and a violin and the “Lussier” trio with
a bassoon, a piano and a trumpet.

We use the following settings for our experiments: The DNN
system sampling rate (cf. Sec. 2.2) was chosen to be32kHz which
is a compromise between the audio quality of the extracted instru-
ment and the DNN training time. For each frame, we haveL = 513
magnitude values and we augment the input vector byC = 3 pre-
ceding/succeeding frames in order to provide temporal context to the
DNN. Hence, one DNN input vectorx has a length of(2C+1)L =
3591 elements and corresponds to224 milliseconds of the mixture
signal. For the training, we useP = 106 samples and the gen-
erated training material has thus a length of62.2 hours. During
the layerwise training, we use600 L-BFGS iterations for each new
layer and the final fine tuning consists of3000 additional L-BFGS
iterations for the complete network such that in total we execute
5 · 600 + 3000 = 6000 L-BFGS iterations.

Table 2 shows the BSS Eval values [23], i.e., thesignal-to-
distortion ratio(SDR),signal-to-interference ratio(SIR) andsignal-
to-artifact ratio (SAR) values after the addition of each ReLU layer.
Besides the raw DNN outputs, we also give the BSS Eval values
if we use a Wiener filter to combine the DNN outputs of the three
instruments. This additional post-processing step allows an en-
hancement of the source separation results since, from the raw DNN
outputs, it computes for each instrument a softmask and applies
it to the original mixture spectrogram. Looking at the results in
Table 2, we can see that there is a noticeable improvement when
adding the first three layers but the difference becomes smaller for
additional layers. For “Brahms”, the best results are obtained after
adding all five layers and performing the final fine tuning. This is
different for “Lussier”: For the trumpet, we can see that the network
is starting to overfit to the training set when adding more than three
layers as the SDR/SIR values start to decrease. The problem is the
limited amount of material for the trumpet (22.5 minutes of solo
performances, see Table 1), which is too small. Interestingly, also
the DNNs for the other two instruments start to overfit which is
probably also due to the trumpet in the mixture. From the results we
can conclude that having sufficient material for each instrument is
vital if only the instrument type is known since only this ensures a
good source separation quality and avoids overfitting.

Table 3 shows for comparison the BSS Eval results for three
unsupervised NMF based source separation approaches:
• “MFCC kmeans [17]”: This approach uses a Mel filter bank

of size30 which is applied to the frequency basis vectors of the
NMF decomposition in order to compute MFCCs. These are

2137

Instrument Output After 1st layer After 2nd layer After 3rd layer After 4th layer After 5th layer After fine tuning
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

B
ra

hm
s

Horn
Raw output 3.30 4.79 9.93 5.15 8.19 8.73 5.29 8.50 8.69 5.38 8.66 8.69 5.53 9.19 8.47 5.70 9.57 8.44
WF output 4.05 5.63 10.25 6.36 10.20 9.08 6.51 10.81 8.87 6.5810.99 8.87 6.71 11.44 8.796.80 11.68 8.79

Piano
Raw output 0.85 1.93 9.58 2.34 4.37 7.97 3.16 6.60 6.64 3.26 6.61 6.82 3.34 6.86 6.71 3.47 7.34 6.51
WF output 2.62 4.54 8.41 4.13 7.53 7.49 4.36 9.07 6.66 4.40 9.13 6.67 4.47 9.41 6.62 4.68 10.13 6.54

Violin
Raw output −0.23 1.88 6.11 3.06 9.52 4.63 3.49 9.21 5.33 3.50 9.23 5.34 3.57 9.44 5.33 3.90 10.34 5.41
WF output 3.62 8.57 5.86 5.27 14.10 6.05 6.04 15.19 6.74 6.08 15.30 6.76 6.02 15.36 6.686.11 15.60 6.75

Lu
ss

ie
r

Bassoon
Raw output 3.05 5.48 7.82 3.47 6.51 7.32 3.62 7.00 7.07 3.68 7.14 7.04 3.72 7.31 6.96 3.39 7.08 6.60
WF output 4.38 7.55 7.94 4.40 9.38 6.53 4.36 9.71 6.304.42 9.75 6.36 4.34 9.75 6.26 3.92 9.37 5.85

Piano
Raw output 1.57 3.30 8.08 1.69 4.06 6.90 1.87 4.21 7.08 1.94 4.31 7.06 1.93 4.38 6.92 1.97 4.65 6.61
WF output 3.12 6.07 7.14 3.33 6.60 6.95 3.23 6.44 6.943.32 6.64 6.89 3.27 6.69 6.75 2.99 6.64 6.29

Trumpet
Raw output 5.01 9.37 7.47 6.28 11.26 8.256.61 11.67 8.51 6.56 11.54 8.52 6.55 11.57 8.49 6.38 11.49 8.27
WF output 6.00 10.18 8.49 7.14 12.86 8.717.38 13.55 8.77 7.23 13.43 8.62 7.22 13.49 8.58 7.23 13.54 8.57

Table 2: BSS Eval results for DNN instrument extraction (“Brahms” and “Lussier” trio, all values are given in dB)

Instrument MFCC kmeans [17] Mel NMF [17] Shifted-NMF [18] DNN with WF
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

B
ra

hm
s Horn 3.87 5.76 9.41 4.17 5.83 10.17 2.95 3.34 15.206.80 11.68 8.79

Piano 3.30 4.42 10.76 −0.10 0.21 14.39 3.78 5.59 9.50 4.68 10.13 6.54
Violin −8.35 −7.89 10.21 9.69 19.79 10.19 7.66 10.96 10.74 6.11 15.60 6.75

Average −0.39 0.76 10.13 4.59 8.61 11.58 4.80 6.63 11.815.86 12.47 7.36

Lu
ss

ie
r Bassoon 1.85 11.67 2.61 0.15 0.75 11.72−0.83 −0.60 15.43 3.92 9.37 5.85

Piano 4.66 6.28 10.64 4.56 8.00 7.83 2.54 5.14 7.16 2.99 6.64 6.29
Trumpet −1.73 −1.29 12.18 8.46 18.12 9.05 6.57 7.39 14.95 7.23 13.54 8.57
Average 1.59 5.55 8.48 4.39 8.96 9.53 2.76 3.98 12.514.71 9.85 6.90

Table 3: Comparison of BSS Eval results (all values are given in dB)

then clustered viakmeans. For the Mel filter bank, we use the
implementation [24] of [25].

• “Mel NMF [17]”: This approach also applies a Mel filter bank
of size30 to the original frequency basis vectors and uses a sec-
ond NMF to perform the clustering.

• “Shifted-NMF [18]”: For this approach, we use a constant Q
transform matrix with minimal frequency55 Hz and24 fre-
quency bins per octave. The shifted-NMF decomposition is al-
lowed to use a maximum of24 shifts. The constant Q transform
source code was kindly provided by D. FitzGerald and we use
the Tensor toolbox [26,27] for the shifted-NMF implementation.

The best SDR values in Table 3 are emphasized in bold face and
we can observe that, although our DNN approach not always gives
the best individual SDR per instrument, it has the best average SDR
for both mixtures since it is capable of extracting three sources with
similar quality. This is not the case for the NMF approaches which
have one instrument with a low SIR value, i.e., one instrument that
is not well separated from the others.5

In order to see the benefit of the least squares initialization from
Sec. 2.3 we show in Fig. 2 the evolution of the normalized DNN
training errorJ = (

∑P

p=1‖s
(p)− ŝ(p)‖2)/(

∑P

p=1‖s
(p)−Sx(p)‖2)

whereS is the selection matrix from Sec. 2.2. The denominator of
J gives the SSE of a baseline system where the DNN is perform-
ing an identity transform. From Fig. 2 we can see that the error is
significantly decreased whenever a new layer is added as the error
J exhibits downward “jumps”. These “jumps” are due to the least
squares initialization of the network weights. For example, consider
the training error in Fig. 2 of the network that extracts the piano:
When the first layer is added, we have an initial error ofJ = 0.23,
which means that, using the least squares initialization from Sec. 2.3,
we start from a four times smaller error compared to the baseline
initialization Winit

1 = S andbinit
1 = 0. Would we have used the

5Please note that the considered NMF approaches are only assuming to
know the number of sources, i.e., they use less prior knowledge than our
DNN approach. We also tried the supervised NMF approach from[28] where
the frequency basis vectors are pre-trained on our instrument database. How-
ever, this supervised NMF approach resulted in significant worse SDR values
as the learned frequency bases for the instruments are correlated which intro-
duces interference.

600 1200 1800 2400 3000 6000

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of L−BFGS iterations

N
or

m
al

iz
ed

 tr
ai

ni
ng

 e
rr

or
 J

2nd
 la

ye
r

ad
de

d

3rd
 la

ye
r

ad
de

d

4th
 la

ye
r

ad
de

d

5th
 la

ye
r

ad
de

d

S
ta

rt
 fi

ne
 tu

ni
ng Piano

Horn
Violin

Fig. 2: Evolution of training error for “Brahms”

baseline initialization, then a simulation showed that it would have
taken us 980 additional L-BFGS iterations to reach the error value
of the least squares initialization. These L-BFGS iterations can be
saved and, therefore, we converge much faster to a network with a
good instrument extraction performance.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we used a deep neural network for the extraction of an
instrument from music. Using only the knowledge of the instrument
types, we generated the training data from a database with solo in-
strument performances and the network is trained layer-wise with a
least-squares initialization of the weights.

During our experiments, we noticed that the material length and
quality of the solo performances is important as only sufficient ma-
terial allows the neural network to generalize to new, i.e., before
unseen, instruments. We therefore plan to incorporate the “RWC
Music Instrument Sounds” database [29] as it contains high quality
samples from many instruments. Furthermore, our data generation
process in Sec. 2.2 currently does not exploit music theory when
generating the mixtures and we think that, taking such knowledge
into account, should generate training data that is better suited for
the instrument extraction task.

2138

5. REFERENCES

[1] P. Comon and C. Jutten, Eds.,Handbook of Blind Source Sep-
aration: Independent Component Analysis and Applications,
Academic Press, 2010.

[2] G. R. Naik and W. Wang, Eds.,Blind Source Separation:
Advances in Theory, Algorithms and Applications, Springer,
2014.

[3] Z. Rafii and B. Pardo, “Repeating pattern extraction technique
(REPET): A simple method for music/voice separation,”IEEE
Transactions on Audio, Speech, and Language Processing, vol.
21, no. 1, pp. 73–84, 2013.

[4] J.-L. Durrieu, B. David, and G. Richard, “A musically moti-
vated mid-level representation for pitch estimation and musical
audio source separation,”IEEE Journal on Selected Topics on
Signal Processing, vol. 5, pp. 1180–1191, 2011.

[5] D. FitzGerald, “Upmixing from mono - a source separation ap-
proach,”Proc. 17th International Conference on Digital Signal
Processing, 2011.

[6] D. FitzGerald, “The good vibrations problem,”134th AES
Convention, e-brief, 2013.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” inAd-
vances in neural information processing systems, 2012, pp.
1097–1105.

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp.
1915–1929, 2013.

[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,”IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[10] E. M. Grais, M. U. Sen, and H. Erdogan, “Deep neu-
ral networks for single channel source separation,”Proc.
IEEE Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pp. 3734–3738, 2014.

[11] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and
P. Smaragdis, “Deep learning for monaural speech sepa-
ration,” Proc. IEEE Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 1562–1566, 2014.

[12] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and
P. Smaragdis, “Singing-voice separation from monaural
recordings using deep recurrent neural networks,”Interna-
tional Society for Music Information Retrieval Conference
(ISMIR), 2014.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
networks,” Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics, vol. 15, pp. 315–323,
2011.

[14] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean,
et al., “On rectified linear units for speech processing,”Proc.
IEEE Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 3517–3521, 2013.

[15] B. Yang, “A study of inverse short-time Fourier transform,”
Proc. IEEE Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), pp. 3541–3544, 2008.

[16] P. Smaragdis and G. J. Mysore, “Separation by “humming”:
User-guided sound extraction from monophonic mixtures,”
IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics, pp. 69–72, 2009.

[17] M. Spiertz and V. Gnann, “Source-filter based clustering for
monaural blind source separation,”Proc. Int. Conference on
Digital Audio Effects, 2009.

[18] R. Jaiswal, D. FitzGerald, D. Barry, E. Coyle, and S. Rickard,
“Clustering NMF basis functions using shifted NMF for
monaural sound source separation,”Proc. IEEE Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 245–
248, 2011.

[19] P. C. Loizou, “Speech enhancement based on perceptually mo-
tivated Bayesian estimators of the magnitude spectrum,”IEEE
Transactions on Speech and Audio Processing, vol. 13, no. 5,
pp. 857–869, 2005.

[20] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Ex-
tracting and composing robust features with denoising autoen-
coders,” Proceedings of the International Conference on Ma-
chine Learning, pp. 1096–1103, 2008.

[21] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized
denoising autoencoders for domain adaptation,”Proceedings
of the International Conference on Machine Learning, 2012.

[22] J. Fritsch, “High quality musical audio source separation,”
Master’s Thesis, UPMC / IRCAM / Telecom ParisTech, 2012.

[23] E. Vincent, R. Gribonval, and C. Févotte, “Performance mea-
surement in blind audio source separation,”IEEE Transactions
on Audio, Speech and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[24] P. Brady, “Matlab Mel filter implementation,”
http://www.mathworks.com/matlabcentral/
fileexchange/23179-melfilter , 2014, [Online].

[25] F. Zheng, G. Zhang, and Z. Song, “Comparison of different
implementations of MFCC,”Journal of Computer Science and
Technology, vol. 16, no. 6, pp. 582–589, September 2001.

[26] B. W. Bader and T. G. Kolda, “MATLAB tensor toolbox
version 2.5,” http://www.sandia.gov/ ˜ tgkolda/
TensorToolbox/ , January 2012, [Online].

[27] B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB ten-
sor classes for fast algorithm prototyping,”ACM Transactions
on Mathematical Software, vol. 32, no. 4, pp. 635–653, De-
cember 2006.

[28] E. M. Grais and H. Erdogan, “Single channel speech music
separation using nonnegative matrix factorization and spectral
mask,” Digital Signal Processing (DSP), 2011 17th Interna-
tional Conference on IEEE, pp. 1–6, 2011.

[29] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC
Music Database: Music Genre Database and Musical Instru-
ment Sound Database,”Proc. of the International Conference
on Music Information Retrieval (ISMIR), pp. 229–230, 2003.

2139

