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ABSTRACT

In this paper, we present methods in deep multimodal learn-
ing for fusing speech and visual modalities for Audio-Visual
Automatic Speech Recognition (AV-ASR). First, we study an
approach where uni-modal deep networks are trained sepa-
rately and their final hidden layers fused to obtain a joint fea-
ture space in which another deep network is built. While
the audio network alone achieves a phone error rate (PER)
of 41% under clean condition on the IBM large vocabulary
audio-visual studio dataset, this fusion model achieves a PER
of 35.83% demonstrating the tremendous value of the visual
channel in phone classification even in audio with high signal
to noise ratio. Second, we present a new deep network archi-
tecture that uses a bilinear softmax layer to account for class
specific correlations between modalities. We show that com-
bining the posteriors from the bilinear networks with those
from the fused model mentioned above results in a further
significant phone error rate reduction, yielding a final PER of
34.03%.

Index Terms— Audio-Visual Automatic Speech Recog-
nition (AV-ASR), Multimodal Learning, Deep Neural Net-
works.

1. INTRODUCTION

Human speech perception is not only about hearing but also
about seeing: our brain integrates the waveforms representing
the speech information as well as the lips poses and motions,
often called visemes, which carry important visual informa-
tion about what is being said. This has been demonstrated by
the so called McGurk effect [1], which shows that a voicing
of ba and a mouthing of ga is perceived as being da. In
the presence of noise and multiple speakers (cocktail party
effect), humans rely on lip reading in order to enhance speech
recognition [2]. The visual information is also important in
a clean speech scenario as it helps in disambiguating voices
with similar acoustics [3].

In Audio-Visual Automatic Speech Recognition (AV-
ASR), both audio recordings and videos of the person talking
are available at training time. It is challenging to build mod-
els that integrates both visual and audio information, and that
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enhance the recognition performance of the overall system.
While most previous works in AV-ASR focused on enhanc-
ing the performance in the noisy case [4, 5], where the visual
information can be crucial, we focus in this paper on showing
that the visual information is indeed helpful even in the clean
speech scenario.

Multimodal learning consists of fusing and relating in-
formation coming from different sources, hence AV-ASR is
an important multimodal problem. Finding correlations be-
tween different modalities, and modeling their interactions,
has been addressed in various learning frameworks and has
been applied to AV-ASR [6, 7, 8, 9, 10, 11]. Deep Neu-
ral Networks (DNN) have shown impressive performance in
both audio and visual classification tasks, which is why we
restrict ourselves to the deep multimodal learning framework
[12, 5, 13, 14, 15].

In this paper, we propose methods in deep learning to
fuse modalities, and validate them on the IBM AV-ASR Large
Vocabulary Studio Dataset (Section 2). First we consider
the training of two networks on the audio and the visual
modality separately. Then, considering the last layer of each
network as a better feature space, and concatenating them, we
train a classifier on that joint representation, and obtain gains
in Phone Error Rates (PER), with respect to an audio-only
trained network. We then propose a new bilinear network that
accounts for correlations between modalities and allows for
joint training of the two networks, we show that a committee
of such bilinear networks, fused at the level of posteriors,
achieves a better PER in a clean speech scenario.

The paper is organized as follows. In Section 2 we present
the IBM AV-ASR large vocabulary studio dataset, our fea-
ture extraction pipeline for the audio and the visual channels.
Next, in Section 3, we present results for the fusion of net-
works separately trained on each modality. In Section 4 we
introduce the bilinear DNN that allows for a joint training
and captures correlations between the two modalities, and
derive its back-propagation algorithm in Section 5. Finally
we present posterior combination of bimodal and bilinear
bimodal DNNs in Section 6.
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2. AUDIO-VISUAL DATA SET & FEATURE
EXTRACTION

In this Section we present the IBM AV-ASR Large Vocabu-
lary Studio dataset, and our feature extraction pipeline.

2.1. IBM AV-ASR Large Vocabulary Studio Dataset

The IBM AV-ASR Large Vocabulary Studio Dataset consists
of 40 hours of audio-visual recordings from 262 speakers.
These were carried out in clean, studio conditions. The au-
dio is sampled at 16 KHz along with the video frame rate of
30 frames per second at 704 × 480 resolution. The vocabu-
lary size in these recordings is 10, 400 words. This data set
was divided into a test set of 2 hours of audio+video from 22
speakers, with the rest used for training.

2.2. Feature Extraction

For the audio channel we extract 24 MFCC coefficients at 100
frames per second. Nine consecutive frames of MFCC coef-
ficients are stacked and projected to 40 dimensions using an
LDA matrix. Input to the audio neural network is formed by
concatenating±4 LDA frames to the central frame of interest,
resulting in an audio feature vector of dimension 360.

For the visual channel we start by detecting the face in the
image using the openCV implementation of the Viola-Jones
algorithm. We then do a mouth carving by an openCV mouth
detection model. Both these utilize the ENCARA2 model as
described in [16]. In order to get an invariant representation to
small distortions and scales we then extract level 1 and level
2 scattering coefficients [17] on the 64 × 64 mouth region
of interest and then reduce their dimension to 60 using LDA
(Linear discriminant Analysis). In order to match the audio
frame rate we replicate video frames according to audio and
video time stamps. We also add ±4 context frames to the
central frame of interest, and obtain finally a visual feature
vector of dimension 540.

2.3. Context-dependent Phoneme Targets

Each audio+video frame is labeled with one of 1328 targets
that represent context dependent phonemes. 42 phones in
phonetic context of ±2 are clustered using decision trees
down to 1328 classes. We measure classification error rate
at the level of these 1328 classes, this is referred to as phone
error rate (PER).

3. UNI-MODAL DNNS & FEATURE FUSION

In the supervised multimodal scenario, we are given a training
set S of N labeled examples, and C classes:

S = {(x1i , x2i , yi), i = 1 . . . N}, yi ∈ Y = {1 . . . C},

where x1i , x
2
i correspond to the first and the second modality

feature vectors, respectively. We note ti = eyi the classifi-
cation targets, where {ey}y∈Y is the canonical basis in RC .
Let ρ(y|x1, x2) be the posterior probability of being in class
y given the two modalities x1 and x2. In a classification task,
we would like to find the model that maximizes the cross-
entropy E :

E =
1

N

N∑
i=1

C∑
y=1

tyi log ρ(y|x
1
i , x

2
i ). (1)

The first multimodal modeling approach we study is to
train two separate networks DNNa and DNNv on the audio
and the visual features, respectively. The networks are opti-
mized under the cross-entropy objective (1) using the stochas-
tic gradient descent. We formed a joint Audio-Visual feature
representation by concatenating the outputs of final hidden
layers of these two networks, as shown in Figure 1. This fea-
ture space is then kept fixed while a deep or a shallow (soft-
max only) network is trained in this fused space up to the
targets. To keep the feature space dimension manageable, we
configure the individual audio and video networks to have a
low dimensional final hidden layer.
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Fig. 1. Bimodal DNN.

We consider for DNNa and DNNv the following ar-
chitecture dim/1024/1024/1024/1024/1024/200/1328,
where dim = 360 for DNNa and dim = 540 for DNNv .
The fused feature space dimension is 400.

While DNNa achieves a PER of 41.25%, DNNv alone
achieves a PER of 69.36%, showing that the visual informa-
tion alone carries some information but that is not enough in
itself to get a low error rate. A deep network built in the fused
feature space results in a PER of 35.77% while a softmax
layer only in this feature space yields PER of 35.83%. This
substantial PER gain from joint audio-visual representation,
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even in clean audio conditions, demonstrates the value of vi-
sual information for the phoneme classification task. Interest-
ingly, the deep and the shallow fusion are roughly on par in
terms of PER. Results are summarized in the following table:

PER Cross-Entropy
DNNa (Audio Alone) 41.25% 1.53948848
DNNv (Visual Alone) 69.36% 3.24791566
Bimodal (DNN Fusion ) 35.77% 1.31047744
Bimodal (SoftMax Fusion) 35.83% 1.31077926

Table 1. Empirical Evaluation on the AV-ASR Studio dataset.

4. BILINEAR DEEP NEURAL NETWORK

In the previous section the training was done separately on the
two modalities, in this section we address the joint training
problem, and introduce the bilinear bimodal DNN.

For a DNN, we note by σ the non linearity function (sig-
moid in this paper), v` the input of a unit, and h` the output of
a unit in a layer `. For a layer ` we note the dimension of an
input v` byK`. As shown in Figure 1, we consider two DNNs,
one for each modality that we fuse at the level of the decision
function. For simplicity of the exposure, we assume the same
number of layers L (L1 = L2 = L). For the intermediate
layers, we have the standard separate networks:

hj` = σ(W j,>
` vj` + bj`), vj` = hj`−1, hj0 = xj ,

W j
` ∈ RK

j
`×K

j
`+1 , bj` ∈ RK

j
`+1 , ` = 1 . . . L− 1, j ∈ {1, 2}.

The fusion happens at the last hidden layer, where the pos-
teriors capture the correlation between the intermediate non-
linear features of the two modalities produced by the DNN
layers, through a bilinear term. Let v1L = h1L−1, v

2
L = h2L−1,

the posteriors have the following form:

ρ
(
y|x1, x2

)
=

exp

(
v1,>L W yv2L + V >y

(
v1L
v2L

)
+ by

)
Z

,

(2)

whereZ =
∑
y′∈Y exp

(
v1,>L W y′v2L + V >y′

(
v1L
v2L

)
+ by′

)
,

W y ∈ RK1
L×K2

L , Vy = [V 1
y , V

2
y ] ∈ R(K1

L+K2
L), by ∈ R and

y ∈ {1 . . . C}.

4.1. Factored Bilinear Softmax

As the number of classes increases, the bilinear model be-
comes cumbersome computationally, and we need large train-
ing sets to get better estimates of the parameters. In order
to decrease the computational complexity of the model, we
propose the use of a factorization of the bilinear term, that
is similar to the one in [18], but is motivated in our case by
Canonical Correlation Analysis (CCA) [19]:

W y = U1diag(wy)U
2,>, y = 1 . . .C, (3)

where U1 ∈ RK1
L×F , U2 ∈ RK2

L×F , wy ∈ RF , and
diag(wy) is a diagonal matrix with wy on its diagonal .
For numerical stability we consider ||U j ||F ≤ λ, j ∈ {1, 2},
where λ is a regularization parameter. We note by F the
dimension of the fused space, which is typically smaller
than K1

L and K2
L . Considering the factorization in (3) and

maximizing the cross-entropy in the bilinear model (2), we
have : log ρ(y|x1, x2) = Tr(U1,>v1Lv

2,>
L U2diag(wy)) +〈

V1
y, v

1
L

〉
+
〈
V2

y, v
2
L

〉
+ by − log(Z). For fixed weights wy ,

learning (U1, U2) corresponds to a class specific weighted
CCA-like learning where we are looking for projections that
maximize alignment between the intermediate features of the
two modalities, in a discriminative way. Deep CCA of [15]
shares similarities with this model.
On the other hand, for fixed (U1, U2), we can rewrite the
log-posteriors in the following way: log(ρ(y|x1, x2)) =〈
wy, U

1,>v1L � U2,>v2L
〉
+
〈
V 1
y , v

1
L

〉
+
〈
V 2
y , v

2
L

〉
+ by −

log(Z) where � is the element-wise vector product. Hence,
for fixed (U1, U2), we are learning a linear hyperplane in the
fused space of dimension F . The projection on U1 and U2

defines a CCA-like lower dimensional spaces, where the two
modalities are maximally correlated. The fused space is then
defined as the element-wise vector product between two co-
occurring vectors in the CCA-like lower dimensional spaces.
Hence, we can think of the last layer of the bilinear, bimodal
DNN as being an ordinary softmax, having the following
input (v1L, v

2
L, U

1,>v1L � U2,>v2L) ∈ RK1
L+K2

L+F . Therefore
the decision function is learned based on the individual con-
tributions of the modalities v1L and v2L, as well as the joint rep-
resentation produced by the fused space U1,>v1L � U2,>v2L.

4.2. Factored Bilinear Softmax With Sharing

When the classes we would like to predict are organized as
the leaves of a tree structure of depth two, we can further
reduce the computational complexity by sharing weights be-
tween leaves having the same parent node. This is the case in
AV-ASR as the 1328 contextual phoneme states are organized
as leaves of a tree, where the parent nodes correspond to 42
different phoneme categories. In that case we share the bilin-
ear term across leaves having the same parents. By doing so
in the case of AV-ASR, we are only taking into account the
correlations between the audio and the visual channel at the
phoneme level, rather than on a fine grained grid of contextual
states. We can think of this sharing as a pooling operation at
the phoneme level. More formally, assume that the label set
Y is partitioned into G non overlapping groups {Yg}g=1...G,
we assume that:

W y =W g = U1diag(wg)U
2,>, ∀ y ∈ Yg, g = 1 . . .G.

Hence we reduce the number of weights to learn for the joint
representation from C × F to G× F .
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5. BACK-PROPAGATION WITH THE FACTORED
BILINEAR DNN WITH SHARING

In this section we give the back-propagation algorithm and
the update rules for the bilinear DNN with sharing (bi2-DDN-
wS). Recall that our classes have a tree structure with leaves y,
and parent nodes g; a training example is therefore labeled by
its leave label y (States) as well its parent node g (Phonemes),
(x1, x2, y, g), y ∈ {1 . . . C}, and g ∈ {1 . . . G}. We use the
notation g(y) to note the group to which y belongs, and we
set Rootg(y) = 1, Rootg = 0, g = 1 . . . G, g 6= g(y).
For the bilinear softmax with sharing, we keep track of the
errors at the level of the labels (States), as well as the groups
level (Phonemes):

δkL = tk − ρ(k|v1L, v2L), k = 1 . . . C, δL ∈ RC×1.

δgG = Rootg −
∑
k∈Yg

ρ(k|v1L, v2L), g = 1 . . . G, δG ∈ RG×1.

Let W = [w1, . . . , wG] ∈ RF×G, the gradients of the param-
eters of the bilinear softmax are given by:

∂E
∂W

=
(
U1,>v1L � U2,>v2L

)
δ>G .

∂E
∂U1

= v1Lv
2,>
L U2diag(WδG),

∂E
∂U2

= v2Lv
1,>
L U1diag(WδG).

∂E
∂V 1

= v1Lδ
>
L ,

∂E
∂V 2

= v2Lδ
>
L ,

∂E
∂b

= δL.

For the layer right before the Bilinear softmax, we have a dou-
ble projection to the first modality network (audio stream) and
to the second modality network (visual stream).
We need to compute:

W g = U1diag(wg)U
2,>, g = 1 . . .G.

m2→1
g =W gv2L M2→1

L = [m2→1
1 , . . . ,m2→1

G ] ∈ RK
1
L×G.

m1→2
g =W g,>v1L M1→2

L = [m1→2
1 , . . . ,m1→2

G ] ∈ RK
2
L×G.

Let V j = [V j1 . . . V
j
C ], j ∈ {1, 2}, hence the errors we prop-

agate to each network have the following form:

δ1L−1 =
∂E
∂v1L

=M2→1
L δG + V 1δL. (4)

δ2L−1 =
∂E
∂v2L

=M1→2
L δG + V 2δL. (5)

Note that the errors now have an additional term, M2→1
L δG,

and M1→2
L δG, respectively. We can think of those terms

as messages passed between networks through the bilinear
term. In that way, one network influences the weights of the
other one. For the rest of the updates, it follows standard
back-propagation in both networks; we give it here for com-
pleteness. Let u1` = W 1,>

` v1` + b1` , u
2
` = W 2,>

` v2` + b2` ,
then finally we have: ∂E

∂W j
`

= vj` (diag(σ
′(uj`)δ

j
` )
>, ∂E

∂bj`
=

diag(σ′(uj`))δ
j
` , δ

j
`−1 =W j

` δ
j
` , j ∈ {1, 2}, ` = L−1 . . . ..1,

where δ1L−1, and δ2L−1 are given in equations (4) and (5). For
each variable θ, we have an update rule θ ← θ + η ∂E∂θ ,
where η is the learning rate. For U1 and U2, we need to
keep control of the Frobenius norm by following the gra-
dient step with a projection to the Frobenius ball : U j ←
U j min(1, λ

||Uj ||F
), j ∈ {1, 2}.

Remark 1. For the bilinear softmax without sharing the up-
date rules are similar (δG is replaced by δL).

6. COMBINING POSTERIORS FROM BIMODAL
AND BILINEAR BIMODAL NETWORKS

We experiment with various factored bi2-DNN-wS architec-
tures, initialized at random on the IBM AV-ASR Large Vocab-
ulary Studio Dataset. We use the following notation for the
architecture of the bilinear network: [archa|archv|F ], where
archa and archv are the architectures of the audio and the vi-
sual network respectively, and F is the dimension of the fused
space. We consider architectures by increasing complexity
Arch = [360, 500, 500, 200, 1328|540, 500, 500, 200, 1328
|F = 200],Arch1 = [360, 600, 600, 400, 100, 1328|540, 600,
600, 400, 100, 1328|F = 100], and Arch2 = [360, 500, 500,
500, 500, 500, 200, 1328|540, 500, 500, 500, 500, 500, 200,
1328|F = 200]. In all our experiments we set λ = 2. Recall
that the bimodal DNN using the separate training paradigm
introduced in Section 3 achieves 35.83% PER. As shown
in Table 2, each architecture alone does not improve on the
bimodal DNN, but averaging the posteriors of the three archi-
tectures we obtain a small gain. A gain of 1.8% absolute is
obtained by averaging the posteriors of the bimodal and the
bilinear bimodal networks, showing that the bilinear networks
have uncorrelated errors with the bimodal network.

PER
Arch 38.89%
Arch1 39.01%
Arch2 38.36%
Bimodal 35.83%
Arch+Arch1 +Arch2 35.54%
Arch+Arch1 +Arch2 + Bimodal 34.03%

Table 2. Empirical evaluation on the AV-ASR Studio dataset.

7. CONCLUSION

In this paper we have studied deep multimodal learning for
the task of phonetic classification from audio and visual
modalities. We demonstrate that even in clean acoustic con-
ditions using visual channel in addition to speech results in
signifiantly improved classification performance. A bilinear
bimodal DNN is introduced which leverages correlation be-
tween the audio and visual modalities, and leads to further
error rate reduction.
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