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ABSTRACT

Nonnegative Matrix Factorization (NMF), defined as factor-
izing a nonnegative matrix into two nonnegative factor matri-
ces, is a particularly important problem in machine learning.
Unfortunately, it is also ill-posed and NP-hard. We propose a
fast, robust, and provably correct algorithm, namely Gradient
Vertex Pursuit (GVP), for solving a well-defined instance of
the problem which results in a unique solution: there exists
a polytope, whose vertices consist of a few columns of the
original matrix, covering the entire set of remaining columns.
Our algorithm is greedy: it detects, at each iteration, a correct
vertex until the entire polytope is identified. We evaluate the
proposed algorithm on both synthetic and real hyperspectral
data, and show its superior performance compared with other
state-of-the-art greedy pursuit algorithms.

Index Terms— Machine learning, nonnegative matrix
factorization, greedy pursuit, Gradient Vertex Pursuit

1. INTRODUCTION

In the Nonnegative Matrix Factorization (NMF) problem [1],
given an n X m nonnegative matrix ¥ and a positive integer
s < min{n, m}, one is asked to express ¥ as AX, where A
and X are nonnegative matrices of size n X s and s X m respec-
tively. This problem, though finds itself in enormous number
of applications in various fields, is ill-posed [2] and NP-hard
[3]. Most traditional methods rely on solving a non-convex
optimization problem which lack of optimality guarantee [4].
Therefore, provable algorithms for computing NMF under ap-
propriate assumptions are of particular interest.

Recently, it has been shown that under the separable as-
sumption, the NMF problem admits a unique solution [2].

Definition 1 (Separable NMF). A data matrix Y is s—
separable if there exists a cone generated by a few columns
of Y that contains the entire dataset.

In this paper, we tackle the problem of factorizing a nonneg-
ative matrix under the convex hull assumption, a variant of
the separibility, which, too, results in a unique factorization:
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given a data matrix, all of its columns reside in a convex hull
generated by a small subset of a few columns of the matrix
itself. This assumption was justified in several applications
such as text mining, hyperspectral unmixing, and blind source
separation [5] [6] [7].

1.1. Notation

We work in the usual Euclidean space R™ with the canonical
basis {e; }}_;. ForasetI', let |T'| denote its cardinality. Given
a matrix A, the notations A; and Ar represent its column j
and a matrix extracted from |T'| columns of A with indices
in I', respectively. The probability simplex in the subspace
spanned by {e;};er in R™ is defined as Qff = {z € R" :
x > 0,||z|l1 = l,andzy, = Oforallk ¢ I'}. The norm
Il - |]o,row counts the number of the nonzero rows of a matrix.
We write 1 for the all one vector and I for the identity matrix.

1.2. Problem statement

We now formally state our main assumption.

Assumption 2 (Convex hull assumption). Given a matrix
Y € R™ ™ and some positive integer s < min{n, m}, there
exists an index set S of cardinality s such thatY = YsX for
some X € RY™ satisfying 17X = 17.

Solving the NMF problem under Assumption 2, called as
separable NMF with sum—to—one constraint as well, can be
reduced to identifying the vertices of the polytope, denoted
by C = conv({Y]},cs), covering the dataset. This is the
approach we will take. Importantly, an algorithm correctly
factorizes separable NMF with this assumption can exactly
solve, by first normalizing columns of the input matrix to sum
to one, the separable NMF problem without the sum—to—one
constraint. Throughout of the paper, the notation (Y;S,C)
refers to a data matrix Y satisfying assumption 2: the columns
of Y are contained in polytope C with vertex index set S.
The equation ¥ = YsX in Assumption 2 can then be
rewritten as Y = Y X for some X € R}*"™ such that 17X =
17 and X has at most s nonzero rows whose indices are con-
tained in S. We can thus formulate the NMF problem under
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this assumption as a general self-dictionary learning problem:

min £(Y, Y X) st. [ X|lorow <5, X >0, 17X =17,
ey
where £ is a loss function which measures the consistency
between the reconstructed matrix and the original one. We
consider a class of loss functions satisfying the separability.

Assumption 3. The loss function L is separable into the sum
of functions of the individual columns of its argument; i.e.,
L(A) =3, f(Aj) where f : R" — Ry is a strongly convex
function with parameter p > 0 and its gradient is Lipschitz
continuous with constant L. That is, LI < V2 f < pI where
V2f is the Hessian of f. We further assume that f(0) = 0 if
and only if x = 0.

Therefore, (1) is equivalent to

min > f(Y;, VX)) st [|X]ogow < 5, X >0, 17X =17
J

2
The reason for imposing these conditions on f will become
clear in the journal version of the paper, where we analyze
the robustness of the proposed algorithm. Furthermore, the
strongly convexity of f allows fast implementation of the al-
gorithm. To solve (1), we introduce a fast, robust, and prov-
ably correct greedy pursuit algorithm, Gradient Vertex Pur-
suit (GVP), based on these assumptions.

Several provable algorithms based on the separability as-
sumption have been proposed in the last few years such as lin-
ear programming [8] [9] [10], convex optimization [11] [12],
and geometric insights [13] [14] [15] [16] based methods. As
we will show in the experiment section, GVP, while possess-
ing the flexibility and low complexity of a typical greedy algo-
rithm (and thereby faster than linear and convex optimization
methods), is more robust than other greedy pursuit algorithms
for solving the NMF problem under assumption 2.

2. THEORETICAL FOUNDATION

Our solution relies on a greedy approach: given the input data
(Y;S,C), we maintain an estimate of S and incrementally
augment this set one vertex at an iteration. This estimate at
some iteration ¢ is denoted by S? and the convex hull gener-
ated by {Y; }cst is represented by C'. Furthermore, we call
C? the sub-polytope of C at iteration t. The basic intuition of
our method stems from the following observation.

Claim 4. If there is a point lying outside a sub—polytope Ct of
the original vertex hull, there exists at least one vertex which
does not belong to C*.

The proof for this claim is trivially, thus can be omitted. Find-
ing such a point is easy and can be done efficiently by solving
the convex optimization problem:

min£(Y,Ys: X) st X>0, 17X =17, (3

It can be easily seen that solving (3) is equivalent to solving
min L(Y,YX) st X; €Qa,Vie{l,..,m}. @&

Let X! be the optimal solution to (4); each column of the
matrix Y X is the projection of the corresponding data point
onto Ct. Consequently, the zero columns of the residual ma-
trix R = Y — Y X correspond to the interior points of the
sub—polytope, whereas the residuals of the data points lying
outside C! are nonzero.

The main concern now is on a strategy for vertex identi-
fication given a sub—polytope and some exterior point. The
following lemma suggests a way to proceed.

Lemma 5. Let Y; be a column lying outside a sub—polytope
Ct, and let X* be the optimal solution to (4), then
OfVLYXY) | DF (V.Y X)

i 5
Ox; - Iknelfs1 oxy, )

forany j € {1,...,m}.

This lemma can be proved by applying the chain rule to the
left hand side of (5) and then utilizing Assumption 2. Lemma
5 is a generalization of a basic result in polyhedra theory:
there exists at least one vertex that is an optimal solution to
the problem of maximizing a linear function over a polytope
[17]. Indeed, if f is chosen to be the 5 loss, then (5) becomes

R'Y; < max R Y 6)

forall j € {1,...,m}. As aresult of the lemma, a vertex can
be identified by minimizing the left hand side of (5) over the
whole data set; in fact, this is the greedy selection criteria that
we will use in the algorithm. Importantly, it can be proved that
none of the vertices of the sub—polytope is an optimal solution
to this minimization problem.

Lemma 6. Assuming Y; is a column lying outside a sub—
polytope Ct with Xt as the optimal solution to (4), the fol-
lowing holds:
of(Vi, YXJ[)
83)[

0f (i, Y Xj)
Ba:k.

< ()

forany k € St.

The proof for this lemma starts from the optimality condition
of (4). It can easily be obtained by combining a few simple
facts and assumptions: e;, € Q%, forany k € S*, f is convex,
f(Y,Ye) =0,and f(Y;, Y X}) > 0. A column whose index
uniquely minimizes the left hand side of (5) is in fact a vertex
that does not belong to C*. We conclude this section with our
main theorem.

Theorem 7. Given a sub-polytope C* and an exterior point
Y, and let X* be the optimal solution to (4); if the optimiza-
tion problem
o of (YL, Y X))
min ————*=
je{l,...,m} Ox;
has a unique solution k'™, then k'*! € S\ S'.

®)

2126



3. GRADIENT VERTEX PURSUIT ALGORITHM

The following algorithm naturally follows from the analysis
in the previous section.

Algorithm 8 (GVP).

Input: matrix Y € R™"*™ satisfying Assumption 2, the num-
ber of vertices s.
Output: A set S of cardinality s, and a matrix X e Rmxm,
Procedure:
1. Initialize the vertex set estimate SO = (), the coefficient
X0 =0, the residual R° = 0, and the iteration counter
t=0.

2. Arbitrarily choose a nonzero residual RY, and find

- 0f(V, Y X))
argmin ———=

kt+1 _
je{tmy  0%;

3. Augment St = St U {k!T1}.
4. ProjectY onto C'*! by finding X'** that solves:

min (Y, YX) st X; € Q%,V5e{l,...,m},
where U8, = {x € R™ : 2 >0, ||z|y = 1,and x}, =
0forallk ¢ St+1}.

5. Compute the residual R =Y — Y X'+,

6. Sett = t + 1; return to step 2 if t < s, otherwise,
terminate the algorithm.

7. SetS =St and X = X

Step 2 of the algorithm formalizes the greedy selection
criteria mentioned in the previous section. The intuition be-
hind it can be seen by letting f be the /5 loss function. At ini-
tialization, this step finds the column with the largest /3 norm;
moreover, at next iterations, it identifies the column that most
correlates to the chosen nonzero residual. As a result of Theo-
rem 7, one of the vertices is selected at each iteration and none
can be ever chosen twice. This result is stated in Theorem 9
whose proof can be obtained easily by applying Theorem 7.

Theorem 9 (Correctness of GVP). If the input data (Y; S,C)
satisfies Assumption 2 and the optimization problem at step
2 at each iteration has a unique solution, the GVP algorithm
correctly identifies all vertices after exactly |S| iterations.

The solution of the optimization problem at step 4 in it-
eration ¢ represents the coefficient of the data matrix when
all data is projected onto the corresponding sub—polytope.
This minimization problem is convex, thus can be solved
efficiently by many off-the-shelf optimization solvers.

Remark. Similar to [13], the following action can be per-
formed to deal with the situation when (8) has multiple dif-
ferent optimal solutions at certain iteration ¢. If the solutions

are vertices, all of them are added to S*; otherwise, GVP can
be called recursively to identify the vertices of this set of so-
lutions and add them to S*. Strikingly, the unique solution
assumption in Theorem 9 is not strict: it satisfies with a high
probability when data is randomly distributed. The proof for
this claim is nontrivial, thus beyond the scope of the paper.

Moreover, the performance of the algorithm is not af-
fected by the presence of duplicate columns. If step 2 results
in identical vertices, only one of them is added to the ver-
tex set estimate. As shown in Theorem 7, none of them is
selected during subsequent iterations.

It is important to note that our method is different from the
XRAY algorithm [13] [14] as the latter fails to solve the NMF
problem under Assumption 2. This can be seen by consider-
ing a counter example shown in Figure la. Furthermore, in
many cases, although XRAY successfully identifies the poly-
tope vertices, it fails when there is small perturbation in the
data as shown in Figure 1b.

4 4
35 35
3 X ] 3 [ ]
25 25
2 [ 2
X O =
15 15
X
1 X 1 n
05 XRAY 0.5 XRAY
o = GVP 0 = GVP
0 1 2 3 4 0 1 2 3 4
(a) (b)

Fig. 1. Counter examples. (a) Data contained in a triangle
with vertices (3, 1), (1,3), and (3, 3). (b) Noisy version of a
dataset distributed on the line connecting vertices (1.1, 1) and
(3,2.9). XRAY fails in both cases, whereas GVP correctly
identifies all vertices.

Computational complexity. The GVP algorithm requires
O(nms) operations in total. A comparison of its complex-
ity to several state-of-the-art algorithms is shown in Table 1.
Here, c is the number of iterations performed in the ADMM
algorithm for solving the ¢;5-minimization problem [12].

Table 1. Computational complexity comparison.

VCA[18] | SPA [15] | XRAY [13] GVP 412 [12]

O(nms) | O(nms) | O(nms) | O(nms) | O(cm?)

4. NUMERICAL EXPERIMENTS

This section evaluates the GVP algorithm on both synthetic
and real data', and compare its performance to those of var-
ious greedy algorithms in Table 1. We also compare our al-
gorithm to the ¢; p—minimization method [12] to show that
GVP, while being greedy, has almost the same superior per-
formance as this convex relaxation method. We use a similar
experiment setup to [19] and let f to be the /5 loss in all ex-
periments.

"We thank Qing Qu for his valuable suggestions.
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Table 2. Running time comparison on synthetic data.
Algorithm | VCA | SPA | XRAY | GVP | /{12
Time 0.35 | 0.14 | 1.99 5.01 | 30.55

4.1. Synthetic data

We test the robustness of our proposed algorithm against
noise on a USGS library 2. For each simulation, the data
is generated as follows. Each column of the vertex ma-
trix Ys € R™*¢ is randomly selected from the library; the
coefficient matrix X € R**™ has the form of I'[I, X'],
where I, € R®*** is the identity matrix, each column of
X' e Rrx(m_s) follows from a Dirichlet distribution whose
parameters are chosen from a uniform distribution on [0, 1]
and I' is a permutation matrix. The data matrix is generated
by Y = YsX + N where each element of N is drawn from
a Normal distribution. The signal-to—noise ratio (SNR), de-

fined as SNR = 10log, (% ”EH;), is varied from 0 to 30

dB. For each SNR level, the simulation is repeated 100 times.
The success rate and mean square error are shown in Figure 2.
We can see that the GVP algorithm outperforms other greedy
algorithms. Moreover, it is approximately 6 times faster than
the ¢; o—minimization as shown in Table 2.
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g )
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@ 001 \ A
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SNR SNR
(a) Success Rate (b) Mean Square Error

Fig. 2. Robustness comparison on synthetic data.

4.2. Hyperspectral unmixing

This subsection presents numerical results of the GVP algo-
rithm when applied to the hyperspectral unmixing problem.
We use the Urban data * in our experiments. This data is
mainly constituted of six types of materials including road,
roof, metal, dirt, grass, and tree. Additionally, the dimension
of the preprocessed data cube is 307 x 307 x 162 [19]. The
parameters of the original data matrix ¥ € R™*™ are thus
given by: the signal dimension n = 162, the total number
of data points m’ = 307 x 307 = 94249, and the number
of endmembers s = 6. We reduced the size of the dataset
by merging similar columns, resulting in a reduced data ma-
trix Y € R™ ™ of size 162 x 1147. Algorithms are then
applied to this reduced dataset to extract s = 6 endmembers.
Figure 3 illustrates the vertices identified by various methods.

Zhttp://www.Ix.it.pt/ bioucas/code/sunsal demo.zip
3http://www.agc.army.mil/

Our GVP algorithm extracts distinct endmembers which are
mostly similar to ones manually labeled.
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g 1 g 1

s 3

BOS| e EOSIT T

3] 3] ﬁf&ﬂl_w_/_‘:_j;/;tw

~ O m 0F
50 100 150 50 100 150

Band Band

o (c) SPA o (d) XRAY

3 1 S 1

g | g

o551 $05 ~

= o = W

é 0l= jﬁi\ikc é 0 M,::;Zm/ 4,/,\7\ =
50 100 150 50 100 150

Band Band

o (c) VCA o (f) 412

z 1 z 1

< s

05 — 205 /a4

=1 r\ﬂmﬂ‘?wv = / W/,,

é ol= - SN é 0 _ p—

50 100 150 50 100 150

. Band | Band
Fig. 3. Signatures obtained by manually labeling and by the
algorithms.

To further compare the performance of the algorithms, we
use the root mean square error RMSE = \/% Y — YsX| .
Here, S is the endmember index set extracted from the re-
duced data matrix Y by the algorithms, and X is the coef-
ficient of the original data Y when projected onto the esti-
mated polytope, i.e., X = argmin ||Y — YsX||p st. X >0

and 17X = 17. This quantity measures the quality of the
approximation: a small value of RMSE indicates that the de-
tected polytope covers the entire data set well. Results for the
Urban data set is shown in Table 3. It can be seen that the
computationally-efficient GVP algorithm outperforms other
greedy algorithms by a significant margin. In fact, its perfor-
mance approaches that of ¢; p—minimization, while GVP is
approximately 100 times faster than this convex method.

Table 3. RMSE and running time comparison on Urban data.

Algorithm | VCA | SPA | XRAY | GVP {12
RMSE 93.20 | 37.88 | 54.02 | 26.27 | 25.28
Time 0.11 | 0.098 0.24 2.23 199.71

5. CONCLUSIONS

This paper presents the GVP algorithm for solving the sep-
arable NMF problem with the sum-to—one constraint. GVP
is fast, robust, and provably correct. Its robustness to noise,
as shown empirically in this paper, will be addressed and rig-
orously proved in the follow-up journal version of this pa-
per. Finally, its quality of the factorization and approximation
will be further investigated by applying the method to various
other applications.
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