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ABSTRACT

Coupled tensor factorization methods are useful for sensor fusion,
combining information from several related datasets by simultane-
ously approximating them by products of latent tensors. In these
methods, the choice of a suitable optimization criteria becomes diffi-
cult as observed datasets may have different statistical characteristics
and their relative importance for the task at hand can vary. In this pa-
per, we present an algorithmic framework for coupled factorization
that, while estimating a latent factorization also estimates a specific
β-divergence for each dataset as well as the relative weights in an
overall additive cost function. We evaluate the proposed method on
both synthetical and real datasets, where we apply our methods on
a link prediction problem. The results show that our method outper-
forms the state-of-the-art by a significant margin.

Index Terms— Divergence learning, Coupled tensor factoriza-
tions, Tweedie distribution

1. INTRODUCTION

Coupled tensor factorization methods are useful in various applica-
tion areas such as audio processing [1], computational psychology
[2], bioinformatics [3] or collaborative filtering [4], where informa-
tion from diverse sources are available and need to be combined
for arriving at useful predictions. Examples of such situations are
abound: for example for product recommendation, a product-buyer
rating matrix can be enhanced with demographic information from
the customer and connectivity information from a social network. In
musical audio processing, one example is having a large collection
of annotated audio data and symbolic music score information. The
common theme in all such applications is the data fusion problem.

As a warm up, let us consider an example coupled matrix fac-
torization model where two observed data matrices X1 and X2 are
collectively decomposed as

X1(i,m) ≈ X̂1(i,m) =
∑

k
Z1(i, k)Z3(k,m)

X2(j,m) ≈ X̂2(j,m) =
∑

k
Z2(j, k)Z3(k,m) (1)

The factor Z3 is the shared factor in both decompositions, making
the overall model coupled. This coupled model has shown to be
useful various fields [2, 3, 5, 6]. The aim in this model is to estimate
the latent factors Z1, Z2, and Z3 given X1 and X2, where we need
to solve the following optimization problem:

Z?1:3 = arg min
Z1,Z2,Z3

[ 1

φ1
D1(X1||Z1Z3) +

1

φ2
D2(X2||Z2Z3)

]
(2)
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where D1 and D2 are divergence functions measuring the approxi-
mation error and the dispersion parameters φ1 and φ2 are the rel-
ative weights for the error in the approximation to each observed
tensor.

Another coupled factorization model that is popular in link-
prediction applications [7] is given as follows:

X1(i, j, k) ≈ X̂1(i, j, k) =
∑

r
Z1(i, r)Z2(j, r)Z3(k, r)

X2(i,m) ≈ X̂2(i,m) =
∑

r
Z1(i, r)Z4(m, r)

X3(j, n) ≈ X̂3(j, n) =
∑

r
Z2(j, r)Z5(n, r) (3)

where X1 is decomposed by using a Parafac model and the side in-
formations X2 and X3 are decomposed by using different matrix
factorization models.

In applications, as we will also demonstrate in our experiments,
one often needs to develop custom model topologies, where either
the observed objects or the latent factors have multiple entities and
cannot be represented without loss of structure using a matrix. To
have this modeling flexibility for real world data sets that may con-
sist of several tensors and require custom models, we would like
to develop an algorithmic framework that is able to handle a broad
variety of model topologies. In this study, we make use of the Gen-
eralized Coupled Tensor Factorization (GCTF) framework [8] that
aims to cover all possible model topologies and coupled factoriza-
tion models. In this framework, there are Nx different observed
tensors {Xν}Nxν=1, each of them approximated by an output tensor
{X̂ν}Nxν=1, where these output tensors are functions of Nz different
latent factors {Zα}Nzα=1. In this notation, we refer vectors as tensors
with 1 index and matrices as tensors with 2 indices.
Example 1. In Eq.1, we have Nx = 2 observed tensors and Nz = 3
latent factors. Similarly, in Eq.3, we have Nx = 3 observed tensors
andNz = 5 latent factors. The output tensors X̂ν are model-specific
functions of the latent factors Zα as illustrated in Eqs. 1 and 3.

Given the dispersions and the divergence functions, the optimal
latent factors can be found by minimizing the following objective:

Z?1:Nz = arg min
Z1:Nz

Nx∑
ν=1

1

φν
Dν(Xν ||X̂ν) (4)

However, in practice the dispersion parameters and the divergence
functions are not known. In coupled models the success of a method
may hinge criticaly on a good setting of these parameters, yet man-
ual selection is not straightforward especially when the number of
observed tensors, Nx, is large. Hence, we will be concerned with
the following problems:
Estimation of the dispersions: The dispersion parameters φν play
a key role in coupled factorizations as they form the balance between
the approximation error to Xν for example observations may have
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been recorded using different and unknown scales. Typically, such
weight parameters are selected manually [5, 9] and data is assumed
to be suitably preprocessed. In a statistical setting, these relative
weights are directly proportional to the observation noise variances
and can be estimated directly from data.
Automatic selection of the divergences: Euclidean divergence is
commonly used in tensor models, implicitly related to a condition-
ally Gaussian noise assumption. However, heavy-tailed noise dis-
tributions are often needed for robust estimation and more specific
noise models are needed for sparse data, where Gaussian assump-
tions fall short. Choosing suitable divergence functionsDν becomes
even more critical in coupled models due to the data heterogeneity,
where the observed tensors Xν may have different statistical char-
acteristics. In such cases, it is useful to choose a specific divergence
for each observed matrix, where we call total cost functions such as
Eq.4 as mixed divergences.

In this study, we present a novel algorithmic framework for
coupled tensor factorizations where we jointly estimate the disper-
sions φν , divergence functionsDν , and the factors Zα with arbitrary
model topologies. We formulate the problem from a probabilistic
perspective, as making inference in Tweedie models that is an im-
portant special case of exponential dispersion models. We apply our
method on synthetic and real datasets for a link prediction problem
where the aim is to predict the missing parts of an observed tensor.
The results show that our method outperforms the state-of-the-art by
a significant margin.

In the rest of the paper, we will make use of the following vector
notation where we define, xν ≡ vec(Xν) and x̂ν ≡ vec(X̂ν).
Here, vec(·) is the vectorization operator (i.e. the colon operator in
Matlab). We index the elements of the vectorized tensors as xν(i),
where i ∈ {1, . . . , Sν} and Sν is the number of elements in xν .

2. THE MODEL

The GCTF framework assumes the following probabilistic model on
the observed tensors: [8]

xν(i) ∼ T Wpν

(
xν(i); x̂ν(i), φν

)
, ν = 1, . . . , Nx

where T W denotes the Tweedie distribution that is an important
special case of exponential dispersion models, characterized by
three parameters: mean, dispersion, and power. Tweedie densi-
ties T Wp(x; x̂, φ) can be written in the following moment form:
log P(x; x̂, φ, p) = − logK(x, φ, p) − φ−1dp(x||x̂), where K(·)
is the normalizing constant, x̂ is the mean, φ is the dispersion, p is
the power parameter and dp(·) denotes the β-divergence defined as:

dp(x||x̂) =
x2−p

(1− p)(2− p) −
xx̂1−p

1− p +
x̂2−p

2− p , (p = 2− β)

(5)

This model is also known as the power variance model, since the
variance of the data has the following form: var(x) = φx̂p.

By taking appropriate limits, it is easy to verify that dp(·) is
the Euclidean distance square, information divergence, and Itakura-
Saito divergence for p = 0, 1, 2, respectively. In the probabilistic
counterpart, different choices of p yield well-known important dis-
tributions such as Gaussian (p = 0), Poisson (p = 1), compound
Poisson (1 < p < 2), gamma (p = 2) and inverse Gaussian (p = 3)
distributions. Excluding the interval 0 < p < 1 for which no expo-
nential dispersion model exists, for all other values of p, one obtains
Tweedie stable distributions [10].

An important property is that the normalization constantK does
not depend on x̂; hence it is easy to see that for fixed p and φ, solv-
ing a maximum likelihood problem for x̂ is indeed equivalent to
minimization of the β-divergence. For the familiar Gaussian case,
we have T W0(x; x̂, φ) = (2πφ)−1/2 exp(−φ−1d0(x; x̂)) where
d0(x; x̂) = (x − x̂)2/2 and the dispersion is simply the variance.
As for all admissible p, we have a similar form; the Tweedie models
generalize the established theory of least squares linear regression to
more general noise models (restricted to identity link functions).

In this probabilistic setting, the power parameter pν determines
the divergence function (e.g., Dν in Eq.4), the dispersion φν deter-
mines the relative weight of the cost, and the mean parameter x̂ν is
the output of the desired factorization as exemplified in Eqs.1 and
3. The key contribution of this study is to jointly estimate all of the
parameters p1:Nx , φ1:Nx , and Z1:Nz for the complicated cases of p,
which we will describe in the next section.

Even though coupled factorization models have been widely
studied in several domains, estimation of the relative weights and di-
vergences (here, corresponding to φ and p) has not been extensively
explored. In [2], a maximum likelihood estimator for φ was pre-
sented under Gaussian observation models. We developed a similar
approach in [11], where we presented a MAP schema for estimating
φ for the cases where p ∈ {0, 1, 2, 3}. In [12] a score matching
approach was proposed for estimating the power parameter p only
for the non-negative matrix factorization model that uses a Tweedie
distribution with unitary dispersion (φ = 1) as the observation
model. Recently, a score matching approach was proposed in [13]
for making inference in Tweedie distributions with p ≥ 0, where the
Tweedie distribution was approximated by an ‘exponential diver-
gence’ distribution. The authors estimated the dispersion and power
parameter by running a grid search procedure on this approximate
distribution. Besides the β−divergence, the authors also enabled au-
tomatic selection of α, γ, and Rényi divergences through non-linear
transformations. In [14], we presented three different methods for
estimating the parameters φ and p for factorization models with
compound Poisson observations. However, these methods are only
valid for p ∈ (1, 2) and cannot be generalized for the other cases.
The need for a general and efficient method for coupled factorization
models that would handle the whole Tweedie family still prevails.

3. INFERENCE

In this study we propose a novel algorithmic framework for maxi-
mum a-posteriori estimation, where the aim is to solve the following
optimization problem:

max
Z1:Nz
φ1:Nx
p1:Nx

Nx∑
ν=1

[
Sν∑
i=1

(
Kνi −

1

φν
dp(xν(i)||x̂ν(i))

)
+ log P(φν)

]
(6)

where Kνi = − logK(xν(i), φν , pν) and P(φν) is the conjugate
prior distribution of the dispersions, that is an inverse gamma dis-
tribution: φν ∼ IG(φν ; τφ, κφ). Note that, when the dispersion
and power parameters are known, the normalizing constantK(·) and
the conjugate prior become irrelevant and the problem reduces to β-
divergence minimization. However, when these parameters are not
known, we need to deal with the normalizer K(·), an expression
without a simple closed form apart from the cases p = 0, 1, 2, 3.
Here, we focus on these challenging cases where p /∈ {0, 1, 2, 3}.

In order to estimate the latent factors, dispersions, and power
parameters jointly, we propose an iterative schema where we divide
the optimization problem of Eq.6 into simpler subproblems. The
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ultimate method is a coordinate descent algorithm, where each pa-
rameter is updated at each iteration given the up-to-date values of
the remaining parameters. Here, each iteration i consists of three
estimation steps, stated as follows:

Z(i+1)
α = arg max

Zα

∑Nx

ν=1
log P(xν |Z1:Nα , φ

(i)
ν , p(i)ν ), ∀α (7)

φ(i+1)
ν = arg max

φν

log
(
P(xν |φν , x̂(i+1)

ν , p(i))P(φν)
)
, ∀ν (8)

p(i+1)
ν = arg max

pν

log P(xν |x̂(i+1)
ν , φ(i+1)

ν , pν), ∀ν (9)

Given the dispersions and the power parameters, the first problem
(Eq.7) reduces to the well-known problem of minimizing the β-
divergence between the observations Xν and the model outputs X̂ν
with respect to Z1:Nz (see Eq.4). Therefore, any standard algorithm
that minimizes the β-divergence can be used here. In this study, for
this task we make use of the multiplicative update rules given in [8].

3.1. Learning Mixed β-Divergences

The maximum likelihood estimate of φ has analytical solution only
for the Gaussian and the inverse Gaussian distributions. Inferring
φ is intractable for the other cases. In our previous work [11], we
showed that the inference becomes tractable for the Poisson and
gamma distributions when the gamma functions in the probability
mass and density functions are approximated with Stirling’s approx-
imation. The MAP estimate of φ for the cases p ∈ {0, 1, 2, 3} is
given as follows: [11]

φ?ν =

(∑N
i=1 dpν (xν(i)||x̂ν(i))

)
+ κφ

Sν/2 + τφ + 1
, p ∈ {0, 1, 2, 3} (10)

where dp(·) is the β-divergence, defined in Eq.5.
Here, we focus on the remaining cases of p, where the proba-

bility density functions cannot be written in closed-form analytical
expressions. However, they can be expressed as infinite series that is
defined as follows: [10]

T Wp(x; x̂, φ) =
1

xξp

(
∞∑
k=1

Vk(x, p, φ)

)
a(x, x̂, p) (11)

where, a(x, x̂, p) = exp

{
1

φ

(
x̂1−px

1− p −
x̂2−p

2− p

)}
and ξp = 1 for p ∈ (1, 2) and ξp = π otherwise.

The Tweedie density with p ∈ (1, 2) coincides with the com-
pound Poisson distribution [10]. The compound Poisson distribu-
tion is an interesting distribution as it has a support for continuous
positive data and a discrete probability mass at zero. The presence
of the discrete mass at zero makes this distribution suitable for such
applications where the observations are sparse [14]. For x = 0, the
density function is defined as T Wp(x; ·) = exp(x̂2−p/(φ(p− 2)))
and for x > 0, it follows the form of Eq.11, where the terms Vk for
this distribution is defined as follows: (with α = (2− p)/(1− p))

Vk(x, p, φ) =
x−kα(p− 1)kαφk(α−1)

(2− p)kΓ(k + 1)Γ(−kα)
(12)

The cases p < 0 and p > 2 of the Tweedie class correspond to
Tweedie stable distributions. Tweedie stable models are heavy-tailed
distributions and they are left-skewed for p < 0 and right-skewed
for p > 2. The Tweedie stable models with p > 2 can be useful

for many applications, including audio signal processing [15] and
computer networks [16]. The Tweedie stable models with p < 0
can be used for risk modeling [17], however their applications on
coupled factorization models are limited. We present the derivations
for p < 0 for completeness. For the Tweedie models with p < 0 and
p > 2, the terms Vk are defined as follows: [10]

Vk(x, p, φ) =
Γ(1 + k

α
)φ

k
p−2 (−1)k sin( kπ

α
)

Γ(k + 1)(1− p)k(2− p)− kα x−k
, (p < 0)

Vk(x, p, φ) =
Γ(1 + αk)φk(1−α)(−1)k sin(−kπα)

Γ(k + 1)(p− 1)−αk(p− 2)kxαk
. (p > 2)

In order to estimate the dispersions in the compound Poisson
and the Tweedie stable distributions, we use a limited memory
quasi-Newton method, namely the L-BFGS-B algorithm [18]. This
method requires the gradient of the map objective function that is
given as follows:

∂g(φν)

∂φν
=

1

φ2
ν

[ Sν∑
i=1

(
x̂ν(i)2−pν

2− pν
+
xν(i)x̂ν(i)1−pν

pν − 1
) + κφ

]

− 1

φν

[
cp

Sν∑
i=1

∞∑
k=1

kVk(xν(i), pν , φν)

Sν∑
i=1

∞∑
k=1

Vk(xν(i), pν , φν)

+ τφ + 1
]

(13)

where g(φν) = − log P(xν , φν |x̂ν , pν) and cp = 1−pν for pν < 0
and cp = 1/(pν − 1) otherwise.

The gradient requires two infinite summations to be computed,
which is intractable. In this study, we utilize efficient numerical
methods by following [19] for approximate computation of these
summations. This method locates the indices k where the terms Vk
make the major contribution to the sum. The infinite sum is then
approximated by summing up the terms in the located region. The
cases p ∈ (1, 2) and p > 2 is described in [19]; for completeness we
explain the method for p < 0 in the supp. document [20].

The last step of the proposed method (Eq.9) is to compute the
maximum likelihood estimate of the power parameter p. Unfortu-
nately, the optimal p does not have an analytical solution; the state-
of-the-art is based on running numerical methods on this problem
[19, 21, 14]. In this study, we utilize a grid search procedure in order
to estimate the power parameter p given the other parameters. Note
that, even though it is not explicitly demonstrated in this study, the
proposed methods are scalable; in large-scale settings, they can be
implemented in an embarrassingly parallel fashion as the problem
is separable over the indices i. The pseudo-code of the proposed
method is provided in the supp. document [20].

4. EXPERIMENTS

4.1. Synthetic Data

We illustrate the proposed method on the simple model defined in
Eq.1. Here, we randomly generate the latent variables Z1:3, φ1:2,
power parameters p1:2, and the observed tensors X1:2. Our aim is to
find the MAP estimates of all the latent variables given X1 and X2.

Since the true values of the latent variables and the global opti-
mum of Eq.6 might not coincide, in order to approximate the global
optimum of Eq.6, we first conduct ‘oracle’ experiments where we
assume that the global optimum would be near the true values of
the variables. In these experiments, we initialize all the variables
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Fig. 2. General sketch of the second model. The idea is to incorporate spectral information from the recordings of the instru-
ments and harmonic information from an approximate score which is not necessarily aligned. The blocks visualize the tensors
and the arrows denote the relation between them. The lower-case letters and small arrows near the blocks represent the indices
of a particular tensor.

where X3 is a score matrix, which can be possibly obtained
from a MIDI file: X3(i, n) is set to a constant value if the ith

note is active at time frame n. X1 and X3 do not necessarily
belong to the same piece, however, in this study we select X3

as a transcription of X1.
Furthermore, Z and Y are 0 − 1 matrices that allow the

model to handle audio mixtures with multiple instruments.
Z(i, k) = 1 if ith note and kth chord template belong to the
same instrument. Similarly, Y (k, n) = 1 if the instrument
that kth chord template belongs to is active at time n. G
models the time varying amplitudes of the chord templates.
Figure 2 visualizes the general structure of the model. The
coupling matrix R for this model is defined as follows:

R =




1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 1 1 0 0 0 1 1


 . (18)

Note that similar models to this model were proposed in order
to solve audio restoration [4, 11] and polyphonic transcription
problems [12] where encouraging results were obtained.

4. RESULTS

In order to evaluate our models, we have conducted several
experiments. We have synthesized 3 piano and cello duets
by using RWC Musical Instrument Sound database [13] and
a simple concatenative synthesis algorithm and then we have
selected 3 excerpts of 45 seconds from random parts of each
piece yielding 9 test cases. In all our experiments the audio is
subdivided into frames of 186 milliseconds where the audio
spectrum is computed via Modified Discrete Cosine Trans-
form (MDCT).

Since our second model needs only an approximate tran-
scription, we also tested this model on different transcription

durations: we used the first 10, 30, and 45 seconds of the
transcriptions during the tests.

We have run the inference algorithms for 50−75 iterations
for both models and we have used 134 spectral templates that
correspond to 88 piano and 46 cello notes. We have also used
80 chord templates for the second model; 50 templates for pi-
ano and 30 templates for cello. The factors B, C, D, E, F ,
and G are initialized randomly and updated during the esti-
mation process. The other factors are clamped to their initial
values.

In order to measure the performance of our models, we
compute the signal to interference ratio (SIR), signal to arti-
fact ratio (SAR), and signal to distortion ratio (SDR) by using
the BSSEVAL toolbox (v3.0) [14]. The evaluation results are
given in Table 2. It can be observed that, despite the first
model uses the temporally aligned transcription, the second
model yields a similar performance and it even performs bet-
ter than the first model for all metrics when KL divergence
is chosen. We can also observe that increasing the duration
of the transcription that is used in the second model improves
the performance of the system which validates the idea behind
the model. Some audio examples can be found in http://
www.cmpe.boun.edu.tr/˜umut/eusipco2012/.

5. CONCLUSION

In this study, two NMF-based models for musical source
separation are presented. The first model uses a temporally
aligned MIDI file and incorporates spectral information by
using isolated note recordings. As opposed to the first model,
the second model incorporates harmonic information by us-
ing an approximate and not necessarily aligned MIDI file.
The GCTF framework enables these models to be defined in
a compact notation. Besides, once the models are defined in
this framework, the inference algorithm is readily available.
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is chosen. We can also observe that increasing the duration
of the transcription that is used in the second model improves
the performance of the system which validates the idea behind
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In this study, two NMF-based models for musical source
separation are presented. The first model uses a temporally
aligned MIDI file and incorporates spectral information by
using isolated note recordings. As opposed to the first model,
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a compact notation. Besides, once the models are defined in
this framework, the inference algorithm is readily available.
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Fig. 1. a) General sketch of the proposed model. The blocks visualize the tensors that are defined in the model. The lower-case letters and
arrows near the blocks represent the indices of a particular tensor. b) F-measure comparison of the proposed method and the state-of-the-art.

(Z1:Nz , φ1:Nx , p1:Nx ) to their true values and run the proposed
method in order to find the local optimum that is closest to the true
values of the variables. We treat the oracle estimates as the global
optimum. Then, we re-run the proposed method by initializing the
variables randomly. We measure the mean squared error (MSE) be-
tween the oracle values of the power and dispersion parameters and
the values that we obtain with random initialization.

In our experiments, we set the sizes of the observed indices equal
to each other: |i| = |j| = |m| = s and we set |k| = 1. We
explore three different values for s: 25, 50, and 100 and repeat the
experiments 100 times for each configuration of s. Table 1 shows
the results. The results show that, even with a small amount of data,
our method is capable of estimating the power and the dispersion
parameters accurately. Besides, the MSE is gracefully degrading as
the size of data increases.

4.2. Link Prediction

In this section, we address the missing link prediction task, where the
aim is to predict missing parts of an observed tensor. We evaluate our
method on the UCLAF dataset [4]. This dataset has a main tensorX1

of size 146× 168× 5, which encapsulates user-location-activity in-
formations, where X1(i, j, k) = 1 if the user i visits location j and
performs activity k there andX1(i, j, k) = 0 otherwise. The dataset
also includes additional side information: the user-location prefer-
ences matrix X2, the location-feature matrix X3, the user-user simi-
larity matrixX4, and the activity-activity matrixX5. The aim in this
application is to predict the missing parts of X1.

By following a similar approach to [7], we model this dataset by
using the following coupled factorization model:

X1(i, j, k) = X̂1(i, j, k) =
∑

r
Z1(i, r)Z2(j, r)Z3(k, r),

X2(i,m) = X̂2(i,m) =
∑

r
Z1(i, r)Z4(m, r),

X3(j, n) = X̂3(j, n) =
∑

r
Z2(j, r)Z5(n, r),

X4(i, p) = X̂4(i, p) =
∑

r
Z1(i, r)Z6(p, r),

X5(k, s) = X̂5(k, s) =
∑

r
Z3(k, r)Z7(s, r)

where X1 is decomposed by using a Parafac model and the remain-
ing observed tensors are decomposed by using matrix factorization
(MF) models. Fig.1(a) visualizes the general structure of the model.
In our experiments, we erase random parts ofX1 at varying amounts

Table 1. The results of the experiments on synthetical data.

s = 25 s = 50 s = 100

MSE (power) 0.0822 0.0563 0.0635
MSE (dispersion) 0.9087 0.6933 0.2763

(i.e., {10%, 30%, 50%, 70%, 90%}) and evaluate our method on the
prediction of the erased parts. We set the number of components to
|r| = 5 and use the F-measure as the evaluation metric.

We compare our method with two other methods: 1) a Parafac
model with Euclidean cost [22] that makes use of only X1, 2) the
complete model (Parafac-MF) with with Euclidean cost and unitary
dispersions [8] (p1:5 = 0 and φ1:5 = 1). The second method can
also be considered as extended versions of [7, 23]. We also compare
our dispersion estimation method with two different dispersion es-
timators that have not been explored for coupled factorization mod-
els; yet commonly used in the generalized linear models literature,
namely the Pearson and mean deviance estimators [24]. For these
estimators, we replace Eq.8 with one of these estimators and use the
same approach for estimating the other variables. Note that, each
step of our method (Eqs.7-9) monotonically increases the likelihood,
whereas the Pearson and deviance estimators do not have such guar-
antee (for non-Gaussian cases); the likelihood might fluctuate over
the iterations when they are used in our iterative schema.

Figure 1(b) visualizes the results of this experiment. We can ob-
serve that, both benchmark methods (Parafac and Parafac-MF) per-
form poorly, where introducing side information (Parafac-MF) re-
sults in a tiny improvement in the performance. As we can also ob-
serve, apart from monotonically increasing the likelhood and achiev-
ing a consistent and sound method, the proposed approach also out-
performs the other estimators, in particular when the percentage of
missing data is low. Joint estimation of p1:5 and φ1:5 yields sig-
nificant performance improvement, where we have 40% F-measure
improvement even when half of the data is missing.

5. CONCLUSION

We presented an algorithmic framework for coupled tensor factoriza-
tion to simultaneously estimate latent factors, specific divergences
and their relative weights in an overall additive cost function, where
the number of observed tensors, the number of latent factors, and the
model topologies can be arbitrary. We applied our method on syn-
thetic and real datasets where we outperformed the state-of-the-art
by a significant margin on a link prediction application.
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