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ABSTRACT

Measures of sparsity are useful in many aspects of audio signal pro-
cessing including speech enhancement, audio coding and singing
voice enhancement, and the well-known method for these applica-
tions is non-negative matrix factorization (NMF), which decomposes
a non-negative data matrix into two non-negative matrices. Although
previous studies on NMF have focused on the sparsity of the two
matrices, the sparsity of reconstruction errors between a data matrix
and the two matrices is also important, since designing the sparsity
is equivalent to assuming the nature of the errors. We propose a
new NMF technique, which we calledLp-norm NMF, that minimizes
theLp norm of the reconstruction errors, and derive a computation-
ally efficient algorithm forLp-norm NMF according to an auxiliary
function principle. This algorithm can be generalized for the factor-
ization of a real-valued matrix into the product of two real-valued
matrices. We apply the algorithm to singing voice enhancement and
show that adequately selectingp improves the enhancement.

Index Terms— Non-negative matrix factorization,Lp norm, aux-
iliary function principle

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] is a powerful technique
that approximates a data matrixY by using the product of two non-
negative matricesW andH. NMF has been actively studied in many
scientific and engineering fields in recent years (see [2]). In partic-
ular, in the field of music signal processing, successful results were
obtained by regarding a magnitude spectrogram as a non-negative
matrix [3].

NMF is formulated as the problem of minimizing a measure be-
tween a data matrix and a model. One standard measure is the Frobe-
nius norm, and it corresponds to assuming that the reconstruction
errors are additive Gaussian noise. While NMF with the Frobenius
norm works well for small errors, NMF performance deteriorates
for large errors such as spike noise, even if there are a few entries
with errors. We thus need to explore appropriate measures for large
errors.

Measures of sparsity (e.g.L1 norm) have been widely used in
many audio signal processing techniques such as NMF and robust
principle component analysis [4,5]. Many previous studies of NMF
have used sparseness measures [6, 7], regularizers [8] and priors [9]
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on W andH, which induce sparse solutions. However, it is difficult
to use the measures between a data matrix and a model directly since
the measures are often non-linear and not differentiable, and it is
intractable to solve the NMF problem.

In this paper, we propose a new NMF technique, which we called
Lp-norm NMF, that minimizes theLp norm of reconstruction errors
between a data matrix and a model. We formulateLp-norm NMF
with 0 < p ≤ 2 and derive a convergence-guaranteed algorithm that
consists of multiplicative update equations forW and H based on
the auxiliary function principle [10,11]. The constantp controls the
sparsity of the reconstruction errors. To examine the effect of varying
p, we apply the proposed algorithm to singing voice enhancement
for monaural audio signals.

We henceforth denote sets of real values and non-negative real
values asR andR≥0, respectively.

2. LP-NORM NON-NEGATIVE MATRIX FACTORIZATION

2.1. Problem setting

Let us define frequency, time, and basis indexes, respectively, asω ∈
[0,Ω − 1], t ∈ [0,T − 1] andk ∈ [0,K − 1] such thatK < Ω and
K < T. Given a non-negative data matrixY := {yω,t}0≤ω≤Ω−1,0≤t≤T−1,
Lp-norm NMF is the problem of minimizing theLp norm

L(W,H) := ∥Y−WH∥pp =
∑
ω,t

∣∣∣∣yw,t −
∑

k

wω,khk,t

∣∣∣∣p (1)

subject to

∀k,
∑
ω

Wω,k = 1. (2)

HereW = {wω,k}ω,k is aΩ × K non-negative matrix andH = {hk,t}k,t
is a K × T non-negative matrix. Eq. (2) is introduced to avoid an
indeterminacy in the scaling. WhenY is a magnitude spectrogram,
the columns ofW represent spectral templates and the rows ofH
represent the temporal activities of the spectral templates.

The constantp controls the sparsity of the reconstruction error.
A smaller p induces the sparsity, and most of the entries of the es-
timated data matrixWH are the same as those ofY, while the other
entries differ greatly from those ofY. On the other hand, a largerp
does not induce the sparsity, and all the entries of the estimated data
matrix may be non-zero. We thus assume that theLp norm satisfies
0 < p < 2, which promotes sparsity. Note that whenp = 2, the
objective function equals the NMF with Frobenius norm.
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2.2. Efficient algorithm based on auxiliary function principle

SinceL(W,H) involves a summation overk in the Lp norm, it is
intractable to solve the current minimization problem analytically.
However, we can develop a computationally efficient algorithm to
find a locally optimal solution based on the auxiliary function prin-
ciple [10,11].

When applying an auxiliary function principle to the minimiza-
tion problem, the first step is to define an upper bound function for
the objective function. Introducing auxiliary variablesξ = {ξω,t ∈
R≥0}ω,t, we derive∣∣∣∣yw,t −

∑
k

wω,khk,t

∣∣∣∣p ≤ pξp−2
ω,t

∣∣∣∣yw,t −
∑

k

wω,khk,t

∣∣∣∣2 + (2− p)ξp
ω,t. (3)

The proof of the inequality is described in Lemma 2 of [12]. The
equality of Eq. (3) holds if and only if

ξω,t =
∣∣∣∣yω,t −∑

k

wω,thk,t

∣∣∣∣. (4)

The term in the square function of Eq. (3) includes a summation
overk, and we further derive the upper bound of the right-hand side
of Eq. (3). Since the square function is a convex function, we can
invoke Jensen’s inequality:(∑

k

wω,khk,t

)2
≤
∑

k

1
λω,t,k

(wω,khk,t)
2 (5)

whereλ = {λω,t,k ∈ R≥0}ω,t,k are auxiliary variables that sum to unity:∑
k λω,t,k = 1. The equality of Eq. (5) holds if and only if

λω,t,k =
wω,khk,t∑

k′ wω,k′hk′ ,t
. (6)

The upper bound ofL(W,H) can thus be described as

L+(W,H, λ, ξ)

=
∑
ω,t

pξp−2
ω,t

{
y2

w,t − yω,t
∑

k

wω,khk,t +
∑

k

1
λω,t,k

(wω,khk,t)
2
}

+
∑
ω,t

(2− p)ξp
ω,t. (7)

We can derive update equations for the parameters, using the above
upper bound. By setting the partial derivative ofL+(W,H, ξ, λ) with
respect toW andH at zero and using Eqs. (4) and (6), we obtain

W←W⊙ [{(Y⊘C)H⊤} ⊘ {(WH⊘C)H⊤}] (8)

H ←H ⊙ [{W⊤(Y⊘C)} ⊘ {W⊤(WH⊘C)}] (9)

where⊙,⊘ denote element-wise product and division, andC is an
Ω × T matrix, whose (ω, t)-th element is

cω,t =
∣∣∣∣yω,t −∑

k

wω,khk,t

∣∣∣∣2−p
. (10)

It is worth noting that each update equation consists of multiplication
by a non-negative factor. Hence, it is guaranteed that the entries of
W andH are always non-negative when their initial values are set at
non-negative values.

3. LP-NORM MATRIX FACTORIZATION

3.1. Problem setting

Although the algorithm in the previous section is for non-negative
matrices, it can be generalized for real-valued matrices, according to
the auxiliary function principle. We call the problemLp-norm matrix

factorization (Lp-norm MF).
Lp-norm MF is the problem of finding real-valued matricesW,H

for a given real-valued data matrixY such that

min
W∈RΩ×K ,H∈RK×T

J(W,H) = ∥Y−WH∥pp,

subject to∀k,
∑
ω

Wω,k = 1

where 0< p < 2 andJ(W,H) is the objective function.

3.2. Iterative algorithm based on auxiliary function principle

As in Sec. 2,J(W,H) involves summation overk in the Lp norm,
and we consider the upper bound ofJ(W,H) to apply the auxil-
iary function principle to the intractable minimization problem. The
inequality used in Eq. (3) is applicable toJ(W,H), and the upper
bound ofJ(W,H) is the same as the right-hand side of Eq. (3). To
derive the upper bound of the square function of Eq. (3), we can use
the generalization of Jensen’s inequality foryω,t,wω,k, hk,t ∈ R, which
was employed in [12]:∣∣∣∣yω,t −∑

k

wω,khk,t

∣∣∣∣2 ≤∑
k

|αω,t,k − wω,khk,t |2
βω,t,k

(11)

whereα = {αω,t,k ∈ R}ω,t,k, β = {βω,t,k ∈ [0, 1]}ω,t,k are auxiliary
variables subject to

∑
k αω,t,k = yω,t,

∑
k βω,t,k = 1. The equality of

Eq. (11) holds if and only if

αω,t,k = wω,khk,t − βω,t,k
(∑

k′
wω,k′hk′ ,t − yω,t

)
. (12)

The upper bound ofJ+(W,H) can thus be described as

J+(W,H, ξ, α, β) =
∑
ω,t

pξp−2
ω,t

∑
k

|αω,t,k − wω,khk,t |2
βω,t,k

+ (2− p)ξp
ω,t.

(13)

By differentiatingJ+(W,H, ξ, α, β) partially with respect toW and
H and setting them at zero, we can obtain the update equations:

wω,k ←
∑

t c−1
ω,thk,t

(
β−1
ω,t,kwω,khk,t + yω,t −

∑
k′ wω,k′hk′ ,t

)
∑

t c−1
ω,tβ

−1
ω,t,kh

2
k,t

(14)

hk,t ←
∑
ω c−1
ω,twω,k

(
β−1
ω,t,kwω,khk,t + yω,t −

∑
k′ wω,k′hk′ ,t

)
∑
ω c−1
ω,tβ

−1
ω,t,kw

2
ω,k

(15)

wherecω,t is defined as Eq. (10).

3.3. Relation toLp-norm NMF

The parametersβ can be chosen arbitrarily subject toβω,t,k ∈ R≥0

and
∑

k βω,k,t = 1. Choosingβ as in [12], we obtain the multiplicative
update equations as in Eqs. (8) and (9). Therefore, we can say that
the algorithm ofLp NMF is a special case of that ofLp MF.

4. APPLICATION TO SINGING VOICE ENHANCEMENT

4.1. Singing voice enhancement

In this section, we applyLp-norm NMF to singing voice enhance-
ment whose aim is to extract a singing voice from a monaural mixed
audio signal consisting of vocal and accompaniment parts. Singing
voice enhancement is often used in music information retrieval
(MIR) applications such as automatic lyrics recognition [13, 14],
automatic singer identification [15], and automatic karaoke gener-
ators [16].
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When input audio signals are multichannel, we can use spatial
cues, based on the fact that the vocal parts of music audio signals
are frequently mixed in the center of the sound field. However, for
monaural inputs, we need other cues instead of the spatial cues.

4.2. Enhancement algorithm

We utilize the fact that there is a difference in spectrogram between
accompaniments and singing voices. Accompaniment sounds are
generated by musical instruments, which reproduce approximately
the same sounds every time they are played. We can see the spec-
trograms of accompaniment signals as a low-rank matrix. In con-
strast, singers fluctuate their singing voices to obtain musical effects
such as vibrato. The spectrograms of singing voices are relatively
high rank and sparse, and corresponds to reconstructions errors of
Lp-norm NMF.

As mentioned in Sec. 2.1, the model spectrogramWH of Lp-norm
NMF is a non-negative matrix with the rank ofK, and smallp in-
duces sparsity of the reconstruction errors. SettingK andp at suffi-
ciently small values, we expect the low-rank matrixWH to contain
accompaniment signals and the reconstruction errorsY−WH to con-
tain singing voice signals.

Let the estimated magnitude spectrogram of a singing voice be
Ŝ = {ŝω,t}0≤ω≤Ω−1,0≤t≤T−1. First, an input signal containing a singing
voice and accompaniment is converted into a complex spectrogram
with the short-time Fourier transform (STFT). We regard the mag-
nitude spectrogram of the input signal as a non-negative matrix, and
apply Lp-norm NMF to the magnitude spectrogram. The obtained
model spectrogramWH should correspond to the accompaniment,
and the reconstruction errors between the observed magnitude spec-
trogram and the model spectrogram corresponds to the singing voice.
The time-frequency components of the model spectrogram may be
larger than those of the observed spectrogram, and we deriveŜ as

ŝω,t =

yω,t −
∑

k wω,khk,t (yω,t ≥
∑

k wω,khk,t)
0 (yω,t <

∑
k wω,khk,t)

. (16)

The estimated magnitude spectrogram with the phase of the original
complex spectrogram is converted into an audio signal by the inverse
STFT.

5. EXPERIMENTAL EVALUATION

5.1. Experimental conditions

To evaluate the performance of the proposed method, we conducted
two experiments on singing voice enhancement: an evaluation of
the effect of p, which controls sparsity, and frame lengthF, and a
comparison of our results with the state-of-the-art [5,17,18].

The criteria for evaluating the singing voice enhancement were
the normalized signal-to-distortion ratio (NSDR) and the global
NSDR (GNSDR), given as

NSDR({ f̂t}t; { ft}t, {xt}t) = SDR({ f̂t}t, { ft}t) − SDR({xt}t, { ft}t), (17)

GNSDR=
∑

i wiNSDR({ f̂i,t}t; { fi,t}t, {xi,t}t)∑
i wi

, (18)

SDR({ f̂t}t, { ft}t) = 10 log10

∑
t f̂t ft(∑

t f̂t
)(∑

t ft
)
−∑t f̂t ft

, (19)

where f̂i,t, fi,t and xi,t denote the estimated signal, the target signal
and the input signal of thei-th piece. NSDR represents the im-
provement in SDR, and GNSDR denotes the weighted averages of
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(a) Spectrogram of input audio signal.
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(b) Spectrogram of audio signal after enhancement.
Fig. 1. Spectrogram examples of (a) a mixed audio signal and (b)
the singing-voice-enhanced audio signal obtained with the proposed
method.

the NSDR of all the music pieces by the length of thei-th piece,
{wi}i . These criteria have also been employed in many previous stud-
ies [5, 17–21]. To calculate the SDR, we used the BSS Eval Tool-
box [22,23].

As an evaluation dataset, we used the MIR-1K dataset [24], fol-
lowing the evaluation framework in [5, 17, 18]. The dataset consists
of 1000 Chinese song clips performed by amateur singers. The du-
rations of the clips range from 4 to 13 s, and the audio signals are
monaural with a sampling rate of 16 kHz. The accompaniment and
vocal parts were recorded separately, and we could mix them with
any signal-to-noise ratio (SNR), where the SNR corresponds to the
voice to accompaniment ratio. The accompaniment and vocal parts
for each clip were mixed at−5 dB (accompaniment is louder), 0 dB
(same level) and 5 dB (vocal is louder) SNRs.

5.2. Effect of sparsity and frame lengths

We first compared the proposed method inp and F. We used
p = 0.1, 0.2, · · · ,2.0 andF = 512, 1024, 2048, 4096 sample points.
For STFT, the window function was the sine window, and the frame
shifts were half the length of the frames. The number of bases was
set atK = 10. The entries ofW andH were initialized randomly.
There were 200 iterations, which is supposed to be sufficient empir-
ically.

Fig. 1 shows one of the enhanced results obtained with the pro-
posed method. The figures show the spectrograms of the input sig-
nal and the enhanced result. We can see that most of the accompa-
nying sounds (vertically and horizontally smooth components) are
suppressed, and the singing voice component of the spectrogram is
clearer than that of the input spectrogram.
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(a) GNSDR at−5 dB SNR.
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(b) GNSDR at 0 dB SNR.
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(c) GNSDR at 5 dB SNR.

Fig. 2. Global normalized signal-to-distortion ratio (GNSDR) of the proposed method with respect top of theLp norm and frame lengthF.
Red, blue, green and purple points correspond toF = 512,1024,2048,4096 sample points. The results are for (a)−5 dB, (b) 0 dB, and (c) 5
dB SNRs.

Table 1. Global normalized signal-to-distortion ratio (GNSDR) comparison with previous studies.F denotes the length of a frame in sample
point. Hsu, Rafii and Huang represent the corresponding methods [5,17,18].

Input
SNR [dB]

Proposed method
F = 1024

Proposed method
F = 2048 Hsu [17] Rafii [18] Huang [5]

−5 2.84 (p = 1.6) 3.70 (p = 1.7) −0.51 0.52 1.51
0 1.93 (p = 1.0) 1.95 (p = 1.0) 0.91 1.11 2.37
5 1.43 (p = 0.8) 1.04 (p = 0.8) 0.17 1.10 2.57
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Fig. 3. Box plot of the normalized signal-to-distortion ratio (NSDR)
of the proposed method for the MIR-1K dataset. The results for
SNRs of−5, 0 and 5 dB are for (p, F) = (1.7, 2048), (1.0,2048) and
(0.8, 1024), respectively.

As illustrated in Fig. 2 for SNRs of−5, 0, 5 dB, the results show
that the GNSDRs depended strongly onp for all frame lengths. The
highest GNSDRs for all SNRs were 3.7 at (p, F) = (1.7, 2048) for
−5 dB SNR, 1.95 at (p, F) = (1.0, 2048) for 0 dB SNR, and 1.43
at (p, F) = (0.8, 1024) for 5 dB SNR. We can see thatp at which
GNSDR was the highest for each input SNR decreased as the input
SNR became higher. With a high input SNR, the non-zero time-
frequency components of the singing voice spectrogram are large,
and increasing the sparsity is preferred. On the other hand, with a
low input SNR, the non-zero time-frequency components are small,
and decreasing the sparsity is preferred. The obtained results are
consistent with this idea.

Fig. 3 shows the distributions of NSDRs for each SNR. The re-
sults were for (p, F) = (1.7,2048), (1.0, 2048), (0.8,1024) for SNRs
of −5,0, 5 dB. Since most of the NSDRs exceeded 0 dB, and we can
confirm that the proposed method worked well for most of the input
signals.

5.3. Comparison with previous studies

Finally, we compared the proposed method with the state-of-the-
art [5, 17, 18]. The results are summarized in Tab. 1. The proposed
method withF = 1024 outperformed two previous methods for all
input SNRs. While the GNSDRs of the proposed method were lower
than those of [5] at SNRs of 0 and 5 dB, the GNSDR with the pro-
posed method was 0.4 to 2.4 dB larger than those of three previous
methods at a SNR of−5 dB. This result indicates that the proposed
method works well particularly in a low SNR environment.

6. CONCLUSION

We proposed a new NMF that minimizes theLp norm of the recon-
struction errors between a data matrix and the model. A compu-
tationally efficient algorithm was derived according to the auxiliary
function principle, and it has multiplicative update equations, which
guarantee the non-negativity ofW andH. The algorithm ofLp-norm
NMF can be generalized for that ofLp-norm MF for real-valued
matrices. We appliedLp-norm NMF to singing voice enhancement
and showed by experiments that adequately selectingp improves the
enhancement quality, and the proposed method outperformed three
previous works under a low SNR situation.

There are several ways to extendLp-norm NMF to other applica-
tions. One promising application is speech enhancement, since the
spectrogram of background noise is sometimes approximated as low
rank and the speech spectrogram is relatively sparse.
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