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ABSTRACT

It is well known from physiological studies that the level of hu-
man attention for adult individuals rapidly decreases after five to
twenty minutes [1]. Attention retention for a surveillance operator
represents a crucial aspect in Video Surveillance applications and
could have a significant impact in identifying relevance, especially
in crowded situations. In this field, advanced mechanisms for selec-
tion and extraction of saliency information can improve the perfor-
mances of autonomous video surveillance systems and increase the
effectiveness of human operator support. In particular, crowd mon-
itoring represents a central aspect in many practical applications for
managing and preventing emergencies due to panic and overcrowd-
ing.

In this paper, an adaptive inductive reasoning mechanism for
saliency extraction and information reconstruction for a distributed
camera sensors network is presented. The proposed system, by
means of Self Organizing Maps (SOMs) [2], can learn the correla-
tion of the observed data and then recover the whole information
from a subset of available sensors.

Experimental results show how the proposed system can recon-
struct the information about the non-observed parts starting from rel-
evant data acquired from observed areas of the environment.

Index Terms— Self Organizing Maps, saliency detection, cog-
nitive crowd monitoring, machine learning, human reasoning

1. INTRODUCTION

There is currently a great interest in methodologies which combine
computer vision tasks with high-level situation awareness modules
for environment monitoring. Techniques such as behavior analy-
sis, event detection, or recognition of possibly dangerous situations
can have a high impact in different sectors, ranging from social (e.g.
security-related) to technological ones (e.g. resources management).
Several works in the literature try to link physical and social aspects
to video surveillance tasks [3]. The main and common problem is
that they require monitoring of events in wide video surveillance net-
works for long periods of time [4].

In order to detect people, local features can be used (e.g., fea-
tures from accelerated segment test - FAST [5]), while optical flow
efficiently estimates human motion [6]. Considering such features,
a new abstract viscous fluid field has been proposed in [7]. More
recently, in [8], a social force model based on people trajectories
has been proposed for describing interactions among the individual
members of a group of people.

These techniques often require a large number of networked
sensors for acquiring data. Adaptable intelligent systems can be
exploited in order to balance the amount of needed resources and
sensory relevant information. Human perception mechanisms for
data processing, integrated in artificial systems, represent a break-
through for designing a new generation of algorithms inspired by
neuroscience. Such frameworks can optimize resource management
and improve camera identification by acquiring (i.e. perceiving)
relevant information to be combined with inductive reasoning, and
machine learning techniques. The main concept in cognitive neu-
roscience is the Perception Action Cycle (PAC) also referred to as
the Fuster’s Paradigm, which is based on five fundamental build-
ing blocks, namely perception, memory, attention, intelligence and
language, [9]. The PAC describes how an entity can perceive, learn
and change itself through continuous interaction experiences with
the external world. In particular the perception and attention blocks
are meant to optimize the information flow within the system. In
such a context, Haykin et al. in [10] have presented an algorithmic
implementation of the human perceptual attention process in order
to separate the relevant from irrelevant information. The challenge
of this scheme is to bridge the gap between cognitive science and en-
gineering in order to design intelligent system called Cognitive Dy-
namic Systems (CDS), originally formalized by Haykin in the cogni-
tive radio domain, [11] and later generalized in [12]. Only recently
the scheme was applied in the crowd monitoring field [13].

In the video-surveillance domain many frameworks are dealing
with saliency extraction from video sequences. In [14], a crowd
anomaly identification technique is proposed through a saliency de-
tector based on center-surround discriminant descriptor (i.e. color,
intensity, orientation, scale). Other frameworks for saliency extrac-
tion use the Histogram of Oriented Gradient (HOG) combined with
Support Vector Machine (SVM) classifier for pedestrian detection
[15] and for people counting [16]. This paper proposes an adap-
tive inductive reasoning mechanism for a saliency-based informa-
tion reconstruction from a distributed camera network. The com-
mon goal of the saliency detection frameworks is to extract relevant
information from guarded environments. In our method the relevant
information, which is identified directly from environmental obser-
vations, is defined through the learning of the relationships among
sensory data. Unlike other methods for relevance detection, the pro-
posed algorithm shows how it is possible to use SOMs for learning
data correlations. Moreover it is presented how through such a pro-
cedure, it is possible to reduce the number of observes areas; by
using such limited observations the proposed system can reconstruct
the whole information. The presented system works at two different
logical levels: by means of SOMs, it is able to learn the correlation of
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(a) Optical flow (b) Controlled areas (c) Crowd density

Fig. 1: Information extraction and crowd density map estimation

the salient observed data. Moreover, relying on an adaptive SOM-
based inductive reasoning process, it is able to recover the whole
information from an optimal subset of sensors, allowing a minimum
distortion.

The remainder of this work is organized as follows. Section 2
presents the proposed bio-inspired inductive reasoning model based
on SOMs, for extracting relevant data and recovering complete in-
formation. Recovering capabilities of the proposed scheme are eval-
uated in Section 3 by using real data from “Performance Evaluation
of Tracking and Surveillance” (PETS) database [17], while conclu-
sions are drawn in 4.

2. DATA CORRELATION REPRESENTATION FOR
BIO-INSPIRED INDUCTIVE REASONING ALGORITHM

Inductive reasoning is a mental process allowing humans to draw
conclusions according to pre-defined models. In this application,
the model describes the relations among different sub-parts of the
guarded environment and it is directly derived from acquired sensors
information. This section proposes a SOM-based data correlation
modeling for inductive reasoning algorithm for relevant information
representation. In particular we suppose to apply it to the crowd
monitoring domain. In Figure 1a an example of information extrac-
tion from a crowded environment is shown. The controlled area can
be divided into sub-parts (Figure 1b) and by applying tools such as
Lucas-Kanade optical flow [18] it is possible estimate the density
of the people within each cell. In this way, a crowd density map,
(Figure 1c) can be sketched. This map be used for evaluating people
density within the scene.

Let us define the available information X, acquired from a video
surveillance network, as the set of crowding state vectors

X = [X1,X2, · · · ,XN ]
T where X ∈ RN . (1)

Xi represents the number of people in each ith monitored area with
i = 1, · · · ,N, estimated through a people counter embedded on cam-
eras. N also represents the maximum number of sensors, as we as-
sume that one camera is associated with one controlled area.

During a training phase, a SOM provides an adaptive mecha-
nism for acquiring different correlation models, according to simi-
lar dynamical evolution of people captured by neurons. The SOM
maps the data (i.e. X) into a dimensionally reduced space. It pro-
vides a semantic representation of the input vectors, by associating
similar (though not necessary identical) crowding states to the same
neuronal unit. Each neuron represents a codeword i.e. a prototype
(or weight) vector Wk = [(Wk)1,(Wk)2, · · · ,(Wk)N ]

T and Wk ∈ RN

where k ∈ {1, · · · ,K} and K is the maximum number of prototype
vectors within the neuronal layer (i.e. the number of neurons in the
SOM).

The external stimuli (i.e. observed state vectors) activate spe-
cific neuronal units in the SOM-map. Therefore, the SOM can be
used for dividing the training data X into different multivariate sets
{Xk}K

k=1 where Xk =
{

X1,k, · · · ,Xn,k
}

is associated to the k− th

neuron, and {Xk}K
k=1 is a partition of X, i.e. Xk ∪Xz = /0, ∀k 6= z

and
⋃K

k=1Xk = X. By examining the possible relationships among
these sub-sequences of training samples, the system can build cor-
relation structures Ck (i.e. correlation matrices) embedded in each
SOM-neuron. The relative effects of the number of people in the
ith monitored area on people on jth zone is stored in the correlation
coefficients ck(i, j).

Ck(X) = (diag(Σk))
−1/2

Σk(diag(Σk))
−1/2 (2)

where Σk is the covariance matrix in the kth node of the SOM com-
puted as Σk = E[(X−Wk)(X−Wk)

T ] and diag(Σk) is the matrix of
the diagonal elements of Σk.

A saliency masking matrix M can be defined as a diagonal ma-
trix with dimension N×N where the elements on the diagonal are
equal to one if the estimated people density in the corresponding
area is available, zero otherwise. It is possible to hide (i.e. mask)
some components of X defining a new vector X ∈ RN as X = M ·X.
The ith component of X is X i = Mi ·Xi, i = 1, · · · ,N. In this way, X
will retain the components of X when Mi = 1 and will be set to zero
elsewhere.

A “masked” distance between two vectors can be defined as a
modified version of the euclidean distance in this case:

dM(X,Y) = ‖MX−MY‖=

√√√√ N

∑
i=1

(Mi ·Xi−Mi ·Yi)
2. (3)

The role of the proposed algorithm is to deduce the people num-
ber inside the non-observed zones. This is accomplished by mini-
mizing the following cost function:

F(X̂) = dM(X̂,X)+‖(X̂−Wk)−Ωk · (X−Wk)‖ (4)

where X̂ the state vector to be estimated, Wk is the weight vector
of the kth SOM neuron activated by X and Ωk is an influence matrix
where each element is given by ωk(i, j) = ck(i, j) ·σ j/σi. Such a
matrix takes into consideration the correlation ck(i, j) between the
zones and their standard deviations σi and σ j which are calculated
during training phase.

The cost function F has two terms: the first F1(X̂) = dM(X̂,X)
is clearly minimized by X̂ = X, i.e. each ith component is equivalent
to the observation. The second term F2(X̂) = ‖(X̂−Wk)−Ωk ·(X−
Wk)‖ represents the objective function introduced for estimating the
number of people within each non-observed component through the
data acquired from the observed areas. This second term takes into
account that each non observed component can be estimated as fol-
lows: (I−M) ·X̂= (I−M) ·(Ωk · [X− (Wk)]+(Wk)) with I identity
matrix N×N.

The minimization of the proposed cost function is an optimiza-
tion problem. The fundamental idea behind this method is to use a
gradient descent approach in order to find a local minimum of the
function F(X̂). This cost function depends from the reconstructed
information X̂, but also implicitly from the masking matrix M that
is representing the most informative areas within the guarded envi-
ronment. This problem can be solved iteratively by searching for the
minimum of F by altering X̂ and then modify the available infor-
mation through the selection of a different masking matrix M with a
constraint on the number of observed areas (i.e., the number of ele-
ments equal to 1 in matrix M). In the following we will concentrate
on finding the local minimum of F for a fixed set of available sensors
(i.e. without modifying the masking matrix M at each iteration).

In Algorithm 1 the pseudo code of the proposed method is pre-
sented, by considering one single step of the optimization procedure
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for a fixed M = M∗. The algorithm parameters are: the precision
value dmin, which defines a stop criterion based on minimum thresh-
old of updating; maxint, which defines the maximum number of al-
lowed iterations; α , which specifies the step size weighting the value
of the cost function.

Data: X, Wk and M∗

Result: X̂
Initialization: X̂new = X+(I−M)Wk,dmin,maxint,α;
Definition:
F(X̂) = dM∗(X̂,X)+‖(X̂−Wk)−Ωk · (X−Wk)‖;
for j = 1 : N do

if M∗j = 0 with M∗j ∈M∗ then
while dx > dmin AND nint 6 maxint do

X̂old = X̂new;

X̂new = X̂old −α · ∂F(X̂)

∂ X̂ X̂=X̂old
;

dx = ‖X̂new− X̂old‖;
nint ++;

end
end

end
Algorithm 1: Computing the optimal value for X̂ with a specific masking
matrix M = M∗

3. EXPERIMENTAL RESULTS

In this section the performance of the proposed algorithm for data re-
covering are described. In order to give consistence to the proposed
approach, an experiment has been conducted on three available video
sequences from the PETS workshop dataset for single camera [17].
According to the main purpose of this work, performances of the
method are evaluated for selecting the optimal subset of sensors in
real crowding scenes, in order to recover the whole information. Five
different SOMs were considered, with K = 25,16,9,4,1 neuronal
units respectively, and the following layer topologies: 5× 5, 4× 4,
3× 3 and 2× 2. The parameters presented in the algorithm 1 are
set as follows: dmin = 0.01, maxint = 60, α = 0.1. Finally, the
proposed algorithm has been compared with the standard SOM ca-
pability to recover missing values, where restoration is based on the
rough representation of the loss data by the value provided by the
prototype or by the “temporal influence” of the BMU, as defined in
[19]. Such a method has been applied for the reconstruction of areas
covered by clouds in a time sequence of optical satellite images. We
will refer to this method as SOM-BMU method, table 1.

Figure 2 shows the correlations between two locations: for dis-
tant zones the correlation is smaller then for neighboring cells.

In Figure 3, an example of how the method works is shown:
the set of sparse data are acquired in proximity to entry and exit
points. The training set is generated by using a crowd simulator. The
same previous five different SOMs were used. The sparse vector X is
projected into SOM space. The grid cells, laid over the image plane,
can be seen as the set of controlled areas. Each cell is associated
to a number of feature extracted by Lucas-Kanade optical flow and
used for estimating the crowd density map. In this example X ∈R20

while X contains 40% of the total information. By comparing the
cost functions it is possible to identify the optimal SOM (in this case
SOM-9).

By the neuronal activation process, each SOM-K provides a re-
constructed crowding density vector XK with a corresponding value

SOM-1 SOM-4 SOM-9 SOM-16 SOM-25
S1 L2Time 14-06 40% of data loss

MSE 0,911 0.845 0.727 0,651 0,455
Cost Function 0,85 0,731 0,698 0,602 0,53

SOM-BMU 0,945 0.596 0.581 0.546 0.559
S1 L2Time 14-31 40% of data loss

MSE 0,908 0.826 0.802 0,688 0,501
Cost Function 0,899 0,831 0,788 0,762 0,677

SOM-BMU 0,901 0.663 0.645 0.639 0.630
S3 14-33 40% of data loss

MSE 0,853 0.783 0.713 0,694 0,655
Cost Function 0,885 0,811 0,806 0,787 0,706

SOM-BMU 0,891 0.799 0.735 0.714 0.701

Table 1: Quantitative results for PETS video sequences. It is important to
note that the minimum value of the Cost Function F proposed in this paper,
corresponds to the minimum value of MSE

Fig. 2: Example of correlations analysis between locations pairs. The data
are represented by the number of feature extracted by Lucas-Kanade optical
flow associated to each cell

Fig. 3: Salient information extraction and crowding density map reconstruc-
tion

of the cost function FK(X̂K) (see equation (4) and algorithm 1). In
table 1 a quantitative results of the reconstruction are presented. In
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Fig. 4: An example of qualitative and quantitative results for PETS sequence S1 L2 Time 14 : 06 (frames 56 and 140) using 40% of the controlled area

this case the SOM-25 provides the lower average cost function value,
which corresponds to the minimum (normalized) reconstruction er-
ror (MSE).

In Figure 4 a qualitative results of the SOM selection process
for crowd density map reconstruction are presented. In the proposed
layer dynamical selection process different SOMs can be chosen in
order to provide the optimal information recovery. During the ini-
tialization phase, the system acquires the data form all the zones.
In this case the proposed framework evaluates the optimum SOM-K
based on the minimum MSE between the prototype Wk of the BMU
k and the observed data X.

Fig. 5: Reconstruction comparison for different saliency extraction meth-
ods: saliency detection presented in [14]; HOG descriptors [15] combined
with a learning-based SVM classifier for person (pedestrian) and head de-
tections. The average mean square error normalized to 1 and the percentage
of the crowd density map average acquired from the system (i.e. Extracted
Relevance-ER) are shown.

Finally, in Figure 5 we compare the proposed strategy for rel-
evant information extraction with other approaches for detecting
saliency in video sequences. In particular, we test the recovering al-
gorithm using the saliency detected by the method proposed in [14]

and using the HOG descriptors combined with SVM for pedestrian
[15] and head detections. The results underline how the presented
relevant extraction, based on the correlations among the parts of the
environment, is able to drastically reduce the total amount of the ac-
quired information (34.11%) then saliency detection (74.95%) and
the pedestrian detection by HOG descriptors (70.18%). We point
out like an higher percentage of crowd density saliency extraction is
not always synonymous of better reconstruction. Considering an ex-
tracted relevance provided by the head detection method (40.54%),
our system is able to better recover the whole density map (MSE
0.4015 vs 0.4168).

4. CONCLUSIONS

This paper has presented an adaptive inductive reasoning mechanism
able to reconstruct missing information from a set of observations.
Salient information has been defined as the optimal subset of obser-
vations which are able to reconstruct the lost information which is
therefore “redundant” for that specific model. The main goal of the
proposed framework is to adapt the inductive reasoning mechanism
and therefore to emphasize the saliency. Accordingly, the recon-
struction of the non-observed data (i.e. loss values) is performed by
means of different correlation models acquired by different SOMs.
By minimizing the proposed cost function, the method is able to
regenerate the missing data and establish the optimal salient infor-
mation. In order to evaluate the reconstruction capability, we have
tested the algorithm for crowd state recovering by considering a lim-
ited subset of observations (i.e. excluding a part of the available
camera sensors). The proposed approach optimizes the estimation
procedure of the original values by considering not only the proto-
types (weights of the BMU) but also the influence of the variations
of neighbours’ values. Moreover, by minimizing the proposed cost
function, by varying the SOM-layer size, it is possible to identify the
optimum filter (i.e. SOM) which corresponds to the minimum MSE
calculated a posteriori (i.e. the minimum introduced distortion).
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