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ABSTRACT 
 
We describe optimal cue mapping (OCM), a potentially 
real-time binaural signal processing method for segregating 
a sound source in the presence of multiple interfering 3D 
sound sources. Spatial cues are extracted from a multi-
source binaural mixture and used to train artificial neural 
networks (ANNs) to estimate the spectral energy fraction of 
a wanted speech source in the mixture. Once trained, the 
ANN outputs form a spectral ratio mask which is applied 
frame-by-frame to the mixture to approximate the 
magnitude spectrum of the wanted speech. The speech 
intelligibility performance of the OCM algorithm for 
anechoic sound sources is evaluated on previously unseen 
speech mixtures using the STOI automated measures, and 
compared with an established reference method. The 
optimized integration of multiple cues offers clear 
performance benefits and the ability to quantify the relative 
importance of each cue will facilitate computationally 
efficient implementations. 
  

Index Terms — Speech segregation, neural networks, 
ratio mask 
 

1. INTRODUCTION 
 
In everyday life, the human hearing system displays a 
remarkable ability to attend selectively to a single sound 
source in a mixture of competing concurrent sources, often 
referred to as the cocktail party effect [1]. In practice, the 
interfering sounds will exhibit a range of characteristics: for 
example, they may be stochastic or periodic in nature or a 
mixture of the two, they may be relatively uncorrelated with 
the target, as is usually the case with multiple talkers, or 
highly correlated, as in the case of reverberation. These 
variations may create conflicting requirements when 
attempting to segregate the target sound. 

Methods involving the estimation of a multiplicative 
mask in the frequency domain show great promise. The 
mask is used to extract the target speech from the mixture. 
[3], [5], [6] describe and develop a sound segregation model 

based on an ideal binary mask (IBM): essentially, when the 
target speech is estimated to be dominant in a time-
frequency unit (TFU), that mask element is set to unity, 
otherwise it is set to zero. The difficulty here is how best to 
estimate the IBM when only the mixture is available. 

An important benefit of listening to speech with both 
ears is the intelligibility improvement it yields in 
acoustically challenging conditions [2]. In one of the few 
papers to discuss target segregation in a binaural mixture [3], 
mask estimation is informed by the interaural time 
difference (ITD) and interaural intensity difference (IID) 
spatial cues. The importance of these cues in localization 
has long been recognized [19], but acoustic signals are rich 
with other cues to assist with source segregation, not only 
spatial, but also from the acoustic environment and 
originating in the sources themselves. The use of these 
additional cues has the potential to improve segregation 
performance. In considering this possibility, however, it is 
desirable to be able to determine the strength of each one, so 
that weak cues are not integrated, possibly wasting limited 
computational resources.  

A difficulty with the IBM is that it becomes 
increasingly sparse as the signal-to-noise ratio (SNR) of a 
target speech source reduces, causing intelligibility to 
deteriorate, albeit gracefully. In these circumstances, the 
ideal ratio mask (IRM) has been shown to perform well in 
automatic speech recognition tasks [7], [8]. Mask values 
between 0 and 1 are allowed and indicate the probability of 
target dominance in each TFU. The IRM leads to better 
objective intelligibility than IBM [17], in part because errors 
in estimation are likely to have less perceptual impact. [17] 
is distinctive in its use of a deep neural network (DNN) to 
optimally estimate the IRM for a monaural mixture. In 
further pioneering work on monaural mixtures, Wang et al. 
address the question of which features most effectively 
inform the mask estimation process [20]. 

In this paper, we apply a simple two-layer feed-forward 
artificial neural network (ANN) to segregate speech in 
binaural mixtures and perform an input importance analysis. 
We demonstrate the viability of the approach using binaural 
cues such as interaural phase difference (IPD), interaural 
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level difference (ILD) and their deltas, together with other 
information extracted from the binaural mixture. Using 
models, we evaluate the performance of the algorithm in 
terms of target intelligibility and demonstrate the smooth 
variation with frequency of the relative importance of six 
particular inputs. 

 
2. ALGORITHM DESCRIPTION  

 
2.1. Cue selection  
 
It is well known that binaural cues play a key role in 
determining the direction of arrival of the sound sources in 
the human auditory system. At frequencies below about 
1.5 kHz, the dominant cue is ITD (or IPD), whereas above 
this frequency ILDs have been shown to play a greater role 
[9]. We use the short-time Fourier transform (STFT) to 
compute these cues on a per-frame basis. Two complex-
valued spectra 𝑋!(𝑚, 𝑏) and 𝑋!(𝑚, 𝑏) are obtained for the 
left and right channels, where the integers 𝑚 and 𝑏 denote 
the time frame index and frequency band, respectively. Then 
IPD and ILD are extracted according to: 
 

𝐼𝑃𝐷 𝑚, 𝑏 = 𝜙   𝑋! 𝑚, 𝑏 − 𝜙   𝑋! 𝑚, 𝑏                             (1)              
 

𝐼𝐿𝐷 𝑚, 𝑏 = 20𝑙𝑜𝑔10
𝑋! 𝑚, 𝑏
𝑋! 𝑚, 𝑏

                                    (2) 

                  
where 𝜙 is the unwrapped phase of the spectra. 

We also choose to extract the first differences (rates of 
change) of IPD and ILD. We do so to demonstrate the 
ability of the OCM method to determine the strength of 
these cues and to combine them optimally with the IPD and 
ILD cues, such that they are likely to improve the estimate 
for both an IBM and an IRM: 
 

∆𝐼𝑃𝐷 𝑚, 𝑏 = 𝐼𝑃𝐷 𝑚, 𝑏 − 𝐼𝑃𝐷 𝑚 − 1, 𝑏                   (3)          
 

∆𝐼𝐿𝐷 𝑚, 𝑏 = 𝐼𝐿𝐷 𝑚, 𝑏 − 𝐼𝐿𝐷 𝑚 − 1, 𝑏                     (4)          
 
For example, consider ∆𝐼𝑃𝐷  in the case that the target 
speech alone is active and is located at 0⁰ azimuth (straight 
ahead of the listener). Then both IPD and ∆𝐼𝑃𝐷 will be 
stable and approximately 0 and the IRM value will be 1. If, 
instead, two interferers are active, one at +30⁰ and the other 
at -30⁰ azimuth, and the target is inactive, the IPD will vary 
erratically and will occasionally be close to zero. Now, 
however, ∆𝐼𝑃𝐷will generally be non-zero and the IRM 
value will be 0. In this scenario therefore, when IPD is zero, 
the value of ∆𝐼𝑃𝐷is a strong indicator of the mask value and 
can be considered important. A similar argument applies to 
∆𝐼𝐿𝐷.  

The fifth ANN input is TFU magnitude, which we 
anticipated would prove to be of moderate importance 
through its ability to detect source inactivity at the 

frequency in question. E.g., when the magnitude is close to 
0, little target speech energy is present and the mask ratio 
should be forced to 0, whereas when interferers and/or the 
target are active the ratio may lie between 0 and 1. 

As a further demonstration of the OCM method we also 
investigate the importance of the interaural coherence (Coh) 
as an ANN input. Coh is used in many separation and 
dereverberation algorithms [10], [11]. In this paper we 
consider anechoic sources only and so it is likely that Coh 
will contribute little to the estimation of the mask values. 
Coh is obtained recursively from the binaural mixture in the 
manner described in [10]. 
 
2.2. Time-frequency mask 
 
The ideal ratio mask 𝑅 𝑚, 𝑏  is found by using the priori 
energy ratio: 
 

𝑅 𝑚, 𝑏 =
𝑇 𝑚, 𝑏 !

𝑇 𝑚, 𝑏 ! + 𝐼 𝑚, 𝑏 !                                       (5) 

                        
where 𝑇 𝑚, 𝑏  and 𝐼 𝑚, 𝑏  are the spectra of the target 
speech and interference, respectively. In addition, the ideal 
binary mask is defined as: 
 

𝐵 𝑚, 𝑏 = 0                                  𝑅 𝑚, 𝑏 > 0.5
1                                  𝑅 𝑚, 𝑏 ≤ 0.5                                     (6) 

             
2.3. Neural network-based mask estimator 
 
Early research [12], [13] has shown that a multi-layer feed-
forward network is a universal function approximator.  In 
addressing our mapping problem we found the performance 
of two-layer and three-layer networks to be very similar. 
Since the training process of a three-layer network is more 
time-consuming, we employ a two-layer feed-forward 
network to estimate the mask value for each frequency 
point. 

To improve neural network generalization, we trained 
at least 20 ANNs for each frequency point and selected the 
five with the lowest mean square estimation errors using test 
data. Averaging the outputs of these 5 ANNs reduces the 
mean square error (MSE) by approximately 3% compared 
with the MSEs of each individual ANN. ANN inputs were 
IPD, ILD, ΔIPD, ΔILD, Coh, and the TFU magnitude and 
the expected output was either IBM or IRM.  

In order to determine the optimum number of neurons 
for the ANN at each frequency point, 20 ANNs with only 
one neuron were trained for 32 frequency points out of the 
257 described in section 3.1, equally spaced on the 
equivalent rectangular bandwidth scale. Their MSE was 
calculated at the testing stage and this was repeated for 
ANNs with from 2 to 20 neurons and the resulting set of 
MSEs is plotted in Figure 1.  Substantial improvements in 
MSE are observable up to 10 neurons, beyond which there 
is very little further improvement. ANNs with 15 neurons 
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exhibit a MSE which is within 0.1% of the asymptotic value 
and this network topology is used throughout our OCM 
model.  

 
Fig. 1: MSE performance of 20 ANNs averaged across 
frequency as a function the number of neurons. 

 
3. TRAINING AND ANALYSIS 

 
3.1. Experimental set up 
 
Training speech was recorded by four males and two 
females in the University of York anechoic chamber. The 
HRIRs of SYMARE subject HA01 [14] were used to 
spatialize the sound sources in the binaural mixture. 
Following [3] as a starting point, we configured our model 
with three sources. All sources were in the horizontal plane, 
with the target at 0° azimuth and the interferers at -30° and 
30° azimuth, respectively. ANN input data was generated 
from contiguous pairs of STFT frames (512-point Hann 
window with 50% overlap). 

STFT frames from the binaural mixture, consisting of 
257 frequencies from 0 Hz up to and including 8kHz were 
used to generate data for the six ANN inputs defined in 
section 2.1 and the corresponding ideal outputs, IBM and 
IRM. The training data consisted of 35,000 items for each 
frequency bin. 80% of the items were used to train the 
ANNs and the rest were used for selecting the best five 
ANNs, as described in section 2.3. There is a left/right pair 
of ANNs for each frequency and hence 514 ANNs in total 
(in this paper, we consider only the left channel). The ANNs 
were trained by using the backpropagation algorithm with 
MSE as the cost function. The ANNs were trained using the 
York Advanced Research Computing Cluster  [16]. 
 
3.2. ANN input importance analysis  
 
Examining the level of contribution by each input to the 
mask value estimated by the ANN reveals the relative 
importance of each input. Several methods of importance 
estimation have been reported [18, 21, 22]. Here we employ 

Garson’s method [18] to analyze each of the inputs. We 
present the results of analyzing the ANNs which were 
trained to estimate ratio mask values. Similar results are 
displayed by the ANNs which estimate binary masks. 

Fig. 2 plots the envelopes of six histograms, showing 
the number of ANNs in 10 bands of normalized relative 
importance values for each input type. The results indicate 
that IPD and ILD contribute most strongly and in equal 
measure to ratio estimation, followed by ΔIPD, ΔILD and 
Mag. As expected, interaural coherence is determined to be 
least important in this anechoic situation. 

 
Fig. 2: Number of ANNs in each band of relative 
importance values, for the inputs IPD, ΔIPD, ILD, ΔILD, 
coherence (Coh) and TFU magnitude (Mag). 

 
 

 
Fig. 3: Relative importance of the inputs IPD, ΔIPD, 
coherence (Coh), ILD, ΔILD and TFU magnitude (Mag) for 
all ANNs from 100 Hz to 8000 Hz. 

 
Fig. 3 breaks the analysis down further and shows how 

the importance of each input varies across frequency. Since 
IPD is closely related to ITD, this result supports the well-
known observation that ITD is the dominant cue at 
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frequencies below about 1.5 kHz and ILD dominates at 
higher frequencies. ΔIPD and ΔILD follow a similar pattern, 
even though they contribute less overall. The importance of 
TFU magnitude increases slightly with frequency. This 
could be because there tend to be more periods of inactivity 
at higher frequencies, increasing the opportunities for this 
input to contribute to the output estimate. As expected, 
interaural coherence is little used, except at low frequencies 
where correlation between neighboring frames may exist. 
 
3.3. Target speech segregation performance 
 
The system’s ability to segregate target speech that the 
ANNs had not been exposed to during training was 
evaluated. The short-time objective intelligibility (STOI) 
measure [15] was evaluated for SNRs of -8 dB, -5 dB and 
0 dB. The test data employed in [3] was used throughout.  
The STOI model yields scores between 0 and 1, where a 
higher score indicates higher intelligibility. 
 

Sys. STOI 
-8 dB -5 dB 0 dB 

 Interferer: cocktail party noise, speech 
utterance 

MIX 0.320 0.392 0.537 
 EBM2 0.508 0.551 0.766 
EBM6 0.567 0.634 0.784 
IBM 0.741 0.808 0.881 

ERM6 0.607 0.683 0.795 
IRM 0.870 0.889 0.918 

 Interferer: rock music, speech utterance 
MIX 0.470 0.542 0.676 

EBM2 0.728 0.768 0.728 
EBM6 0.766 0.817 0.880 
IBM 0.822 0.863 0.895 

ERM6 0.801 0.847 0.889 
IRM 0.874 0.890 0.908 

 Interferer: two different speech utterances 
MIX 0.499 0.577 0.708 

EBM2 0.799 0.838 0.894 
EBM6 0.838 0.865 0.904 
IBM 0.866 0.885 0.910 

ERM6 0.843 0.873 0.905 
IRM 0.888 0.901 0.917 

Table 1: Comparison between different systems across 
different SNRs for a three-source configuration with the 
target at 0° and two interferers at 30° and -30°, respectively. 
Numbers in bold are the best real results for each test 
condition and numbers in italics are the ideal results. 

The upper section of Table 1 presents the results from 
the STOI speech intelligibility model for two cocktail party 
interferers at -30⁰ and +30⁰ azimuth. The performance of 
each of the following three masks appears in the rows: 

• EBM2 (binary mask, using two inputs; IPD and ILD 
only which is similar to ITD and IID in [3]);  

• EBM6 (binary mask, using all six of the inputs 
described in section 2.1) and  

• ERM6 (ratio mask using the same six inputs). 
The performances of the ideal binary and ratio masks appear 
in rows IBM and IRM, respectively. The results show that 
intelligibility improves with the inclusion of a richer input 
set and that the extended data has been integrated 
successfully into the mapping. They also indicate that the 
ratio mask performance is superior to that of the binary 
mask. Similar results are obtained for the other interferer 
conditions using the rock music and the two different speech 
utterances, respectively. These results are in line with 
expectation and demonstrate the successful integration of 
the richer input cues for mask estimation. 

 
4. DISCUSSION 

 
We have selected six cues for the purpose of demonstrating 
the OCM method. The variety of segregation cues can be 
easily expanded to include properties of the acoustic 
environment and source characteristics. Using the methods 
outlined in section 3, it is possible to determine the varying 
relative importance of the input cues for estimating the mask 
under a range of typical acoustic conditions. In hearing aid 
design, for example, this knowledge will allow maximum 
benefit to be drawn from the limited computational 
resources available and will assist in the development of 
segregation algorithms which are able to adapt in a 
continuous fashion as acoustic conditions change. A priority 
for further research is a binaural analysis of input 
importance in the presence of early reflections and 
reverberation. 
 

5. CONCLUSIONS 
 

Optimal cue mapping (OCM) is a straightforward ANN-
based binaural ratio mask estimation method for speech 
segregation. Through modeling, we have demonstrated 
OCM’s ability to integrate binaural cues and other acoustic 
features to segregate speech of high perceptual quality and 
intelligibility in the presence of multiple interfering 
anechoic sounds. OCM also has the potential to assist in 
establishing the relative importance of acoustic spatial cues, 
of properties of the acoustic space and of sound source 
features in a binaural mix. Work is in progress to expand the 
approach to accommodate increasingly complex acoustic 
environments. 
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