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ABSTRACT

Observational studies for psychological evaluations rely on careful
assessment of multiple behavioral cues. Recent studies have made
good progress in automating the psychological evaluation, which of-
ten involved tedious manual annotation of a set of behavioral codes.
However, the current methods impose strict and often unnatural as-
sumptions for evaluation. In this work, we specifically investigate
two goals: (1) Human behavior changes throughout an interaction
and better models of this evolution can improve automated behav-
ioral annotation and (2) Human perception of this evolution can be
quite complex and non-linear and better techniques than averaging
need to be investigated. For this purpose, we propose a Dynamic
Behavior Modeling (DBM) scheme, which models a spouse as un-
dergoing changes in behavioral state within a session, and contrast it
against a Static Behavior Model (SBM) which allows only a constant
session-long behavioral state. We use Negativity in a couples ther-
apy task as our case study. We present results and analysis on both
models for capturing the local behavior information and predicting
the session level negativity label.

Index Terms— Behavioral Signal Processing, Static Behavioral
Models (SBM), Dynamic Behavioral Model (DBM), Hard Expecta-
tion Maximization algorithms.

1. INTRODUCTION

Observational studies are the basis of most psychological evaluations
and they rely on careful observation and assessment of social, affec-
tive, and communicative behavioral cues. In family studies research
and practice, our topic of interest, psychologists rely on a variety of
established coding standards [1-3], with the aim of producing ac-
curate, consistent ratings of human behavior by human annotators.
This manual coding is a costly and time consuming process. First, a
detailed coding manual must be created, which often requires several
design iterations. Then, multiple coders, each of whom has his/her
own biases and limitations, must be trained in a consistent manner.
The process is mentally straining and the resulting human agreement
is often quite low [4].

Great strides have been made over the last few years on estab-
lishing the ability of Signal Processing and Natural Language Pro-
cessing methods as viable in estimating the behavioral state of the in-
terlocutors. Overview papers [5,6] describe some of those advances.
In couples therapy, example work includes [7-16], while similar
work exists in other domains such as motivational interview ther-
apy for addiction and autism [17-21]. These methods however suf-
fer from the simplistic assumption of estimating a single behavioral
state from the whole interaction: the inherent underlying assumption
is that the human is a behavioral state generator and he/she generates
from the same state for the entire duration. On the other hand, previ-
ous work has also focused on dynamically modeling the behavioral
constructs such as emotions [22,23] and engagement [24]. Whereas
these capture the evolution of behavioral states, they fail to provide
a link to an overall perception.

This work was supported by the National Science Foundation (NSF).

978-1-4673-6997-8/15/$31.00 ©2015 IEEE

2090

This work is the first step towards the creation of a more realistic
model of human interaction that will try to address the following:
(1) Human annotators employ a range of information to reach an
integrated conclusion as to the behavior of interlocutors. While in
past work we assumed that all observations (say talk-turns) belonged
to the same class as the overall rating, we will expand our models to
allow for the human subject to move through a range of behavioral
states. We hypothesize that this more realistic model can both (a)
provide more accurate overall judgment and (b) higher-resolution
information about what happens in the interaction.

(2) Humans do not integrate information in a linear manner. The
saying “first impression counts” is an indicator of this non-linear pro-
cess. This phenomenon is also studied extensively in the psychology
literature. For example [25] investigates recency (thing observed last
counts more) and primacy (thing observed first counts more). Inte-
grating information requires an in-depth investigation of the algorith-
mic metrics of behavior (say log likelihood of a negative statement)
versus the impact this has on the coding process. In our recent work
we briefly touched on this [26] in investigating how human annota-
tors employ isolated saliency or causal integration to make their de-
cisions. Through the higher-resolution information achieved through
(1) we can evaluate non-linear techniques in fusing local decisions
for reaching a global (session) decision.

This paper provides a proof of concept of the above by employ-
ing a 2-state model described below as Dynamic Behavioral Model
(DBM) and contrasting it with the Static Behavior Model (SBM).
The SBM works as our baseline assuming a constant behavioral state
throughout interaction. A DBM allows for transitions between be-
havioral states within a session, and learns behavior representations
from these transitions. Comparison of these models helps provide
evaluation results for the goal (1a) in this work while we are work-
ing with our psychology partners to evaluate (1b). In order to eval-
uate fusion of turn-level decisions as stated in goal (2), we evaluate
methods such as model log-likelihood comparison and comparing
distribution of behavioral state occupancies.

This paper is organized as follows: Section 2 provides a descrip-
tion of the database. We describe the SBM and DBMs in detail in
Section 3, followed by the training methodology in section 4. The
evaluation of our behavioral models and their results are detailed in
Section 5, after which we discuss the results in Section 6. Finally,
we present our conclusions in Section 7.

2. DATABASE
We use the data of 134 couples from the UCLA/UW Couple Ther-
apy Research Project [27]. The corpus consists of audio and video,
recorded during sessions of real couples interacting, and the session
transcripts. During a session, the husband and wife converse about
a pre-decided topic (e.g. “why can’t you leave my stuff alone ?)
for a certain duration of time. Based on the Couples Interaction Rat-
ing System [1] and Social Support Interaction Rating System [2],
each participant is later rated by annotators for a set of 33 behavioral
codes including “Acceptance”, “Blame”, “Positivity” and “Negativ-
ity”. Annotators provide subjective ratings on a Likert scale of 1-9,
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Fig. 1: Conceptualizing the proposed graphical model on the right
versus the baseline on the left

where 1 indicates absence of the behavior and 9 implies a strong
presence. The sessions are rated by 2-12 annotators with majority of
the sessions (~ 90%) rated by 3-4 annotators.

For our task, we analyze the ‘Negativity’ behavioral code. In
order to simplify the code learning, we only use sessions with mean
annotator ratings in the top 20% (‘High Negativity’) and bottom 20%
(‘Low Negativity’) of the code range and we binarize into C; and
Cy respectively. In this manner, we pose the learning problem as a
binary classification one, as was also done in our earlier work [16].
Table 1 lists the statistics on the chosen set of data and we describe
our modeling schemes in the next section.

For more information, the reader can refer to [1,2, 10]

Husband Wife
Class Label Co Cy Co C1
Code Range  1.00-1.75 5.33-9.00 1.00-2.00 6.33-9.00
No. of Files 70 70 70 70

Table 1: Data Demographics on 20% least/most negativity sessions

3. BEHAVIORAL MODELING

Existing work [12] has assumed that an interlocutor is constantly in
the same behavioral state. This is equivalent to modeling each inter-
locutor in the interaction as a single state generative model as shown
in Fig. 1 (left). This is clearly limiting and does not reflect human
behavior, that dynamically adapts based on the various stimuli, inter-
nal and external. Below we present two models: the Static Behavior
Model in Sec. 3.1 as our baseline and similar to the one in [12], and
the Dynamic Behavior Model in Sec. 3.2 that allows for transition
between two behavioral states throughout the interaction and thus
makes turn-level decisions instead of session level decisions.

3.1. Static Behavior Models

In the Static Behavior Modeling (SBM) framework, a person’s be-
havior is assumed to remain the same throughout the interaction,
irrespective of external stimuli such as spouse’s utterances, topic be-
ing discussed, etc. This is the same model we had proposed in [12]
and in effect corresponds to behavioral averaging. Thus, all the ut-
terances observed in that session are generated from the same behav-
ioral state as in Fig. 1(left).

Identifying the behavioral state of the interlocutor in this case
is equivalent to identifying the class label C; = {Coy, C1} from
the whole transcript. In this work we employ a Maximum Like-
lihood (ML) formulation for the binary classification. For a set
of observed utterances, corresponding to the whole transcript,
U={U(1),...,U(M)}, we want to find:

P(Code Low-Negatity or High-Negativity|U') = P(Co or C|U)

For class C; = {Coy, C1 }:

P(U|C;)P(Cy)

C; = argcrjljax W 1)
= argmax P(U|C;)P(C;) 2)
<

Since our dataset is balanced (70 files per class), the class prior
probabilities are equal, i.e. P(Co)=P(C1). Therefore, we re-write
the decision as:

C; = argmax P(U|C}) 3)
Cj

Equation 3 represents the final decision scheme for the SBM.
The training and testing methodologies for this model are discussed
in Sections 4.1 and 5.1 respectively.

3.2. Dynamic Behavior Models

Dynamic Behavior Models (DBMs) allow for a person’s behavior
to change over time. This is modeled in the form of transitions
between different behavioral states throughout a session, shown in
Fig. 1 (right). In our work we will simplify the model to have 2
states and we assume that behavior remains short-term stationary
(i.e. behavior does not change within an utterance, but only from
one utterance to another).

We will denote utterance states as S; = {So, S1}. The behav-
ioral state of the interlocutor, labeled by the human annotators as
Low/High Negativity or Co/C1, does not provide a one-to-one cor-
respondence any more. A person that is very negative (C1) can gen-
erate from both states (S, S1). The definition of the states So, S1
will be described in detail in Sec. 4.2.

Given only one turn, similar to the formulation of the SBM, a
ML model will result in:

P(Si|U(m)) = P(U(m)|S:)P(S:) )

This method estimates turn-level state probabilities. Human
coders integrate behavioral information and give a summative opin-
ion on the session level. In order to reach inference from the DBM
for session level behavioral descriptors, we need to also integrate
such turn-level behavioral information. Below we provide two
fusion methods for behavioral integration.

3.3. Fusion Methods for DBMs

There are many perception inspired methods for behavioral integra-
tion. For instance in our work [26] we evaluated whether we could
judge global behavior based on a locally isolated, yet highly infor-
mative event or whether integrating information over time was more
effective. The premise of such work is that the human perception
process is capable of integrating local events to generate an overall
impression at the global level, but this process is not transparent and
as such is difficult to replicate. What we can instead do is use local
information to derive the same global decisions.

In this work we will employ two fusion methods for the DBM:
Activation-based and Likelihood-based.

3.3.1. Activation-based

In the Activation-based DBM (ADBM), shown in Fig. 2 (left), local,
state-label decisions are made for S; as shown below, based on (4)

Si = arg max P(U(m)|5;) P(S;) )
S

J

This fusion method uses a majority vote assumption, where the
behavioral state which generates the largest proportion of utterances
determines the session label decision. From the training data we can
learn the mapping of S; — C;,V 4,5 € {0,1} as explained in
Sec.4.3.1
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Fig. 2: Activation-based DBM (left) versus the Likelihood-based
DBM (right)

3.3.2. Likelihood-based

In the Likelihood-based DBM (LDBM) we employ a Hidden Markov
Model (HMM) representation of the behavioral classes Cy and C;.
This model assumes that an interaction is comprised of utterances
U={U(1),...,U(M)} which are observations emitted by the hidden
state sequence S={S(1), ..., S(M)}, where S(¢) € {So,S51},% €
{1, ..., M}. It is also assumed that both classes Cp and C can pro-
duce both states, albeit with different likelihood, as shown in Fig. 2
(right). In human terms, negative persons are likely to remain mostly
in negative states and express themselves negatively, although it is
sometimes likely that they will express a positive attitude.

In order to identify the most likely behavioral class, we decode
U based on the HMMs of Cy and C and chose the model that is
more likely to have generated it from the state sequence S.

C; :argmaXP(§j|(7,aj,7r) (6)
i

Where
o’ is the HMM state transition matrix of C;
m is the initial state probability vector
S is state sequence decoded by HMM of C; for U

4. BEHAVIOR MODEL TRAINING
In this section, we describe the training procedure for the SBM and
the two DBMs discussed in the previous section. For our imple-
mentation, we use language models to represent probabilistic mod-
els of lexical content, and build them using the SRILM toolkit [28].
We replace maximum likelihood schemes with minimum perplexity
schemes wherever applicable. Perplexity is a measure of how well
a probability model predicts an observation; lower the value, better
the model. For an utterance U (m), it is calculated as:

PP(U(m)) = P(wiwa...wy) /Y (7

Where
P(wyiw2...wy) is joint probability of occurrence of words

Algorithm 1 Hard-Assignment EM algorithm for state convergence
in activation-based DBM
Initialize utterances in Cy session € {So}, C1 € {S1}
Build language model Lo from utterances € Sy, L1 from utter-
ances € S
while training perplexity does not converge do
E-step: Classify every utterance U (m) in C,C1 classes
Get perplexities PPy, PP, of U(m) computed by Lo,L;

state=S1
PPo{U(m)} = PP {U(m)};me{0,1,..., M}
state=So
M-step: Build Ly from Sy utterances,& L from Sq
end while

wj is the ith word of utterance U(m), i € {1,2,..., N}

From (7) we see that minimizing perplexity is equivalent to maxi-
mizing probability

4.1. SBM

From the SBM assumption, we know that the classes and states are
equivalent. Therefore, for building a model of a particular behav-
ioral state Cp/C'1, we collect all utterances from the corresponding
sessions and train the language models Lo/L, respectively. While
doing so, we combine our trained LMs with a Universal Background
Model (UBM), in order to smooth the language models. We use
a parameter A\=0.1 as the interpolation weight for the UBM. Thus,
the SBM consists of two LMs for each speaker that model his/her
language structure corresponding to the least and the most negative
behavior.

4.2. DBM

As seen in Section 3.2, DBMs allow multiple transitions within an
interaction and as a result, each session consists of utterances of mul-
tiple types of behavior. However, we have only the global session
ratings Co and C; and not the utterance-level state labels. There-
fore, we use two iterative semi-supervised methods to label turn-
level information into the two clusters corresponding to Sp and S1,
as described in Section 4.3. Due to the non-availability of utterance-
level labels, the convergence of these methods is verified indirectly
through the overall training perplexity and the testing accuracy.

4.3. Fusion Methods for DBMs

Fusion methods tie local utterance-level decisions to the global
session-level behavior. Therefore, the type of fusion used defines
the relation between behavioral states So/S1 and behavioral classes
Co/C1, as explained below:

4.3.1. ADBM

Just like in the SBM, we initialize the language models Lo/L, for
states So/S1 from utterances in Co/C respectively, smoothed with
a UBM. We then classify each utterance as S or S; and re-train lan-
guage models until the training perplexity converges. Since perplex-
ities are not direct measures of log-likelihoods, we classify each ut-

Algorithm 2 Viterbi-EM algorithm for state and class parameter
convergence in likelihood-based DBM

Initialize utterances in Cp session € {So}, C1 € {S1}
Build language model Lo from utterances € Sp, L1 from utter-
ances € S1
Initialize 7,0°,0!
while training perplexity does not converge do
E-step: Decode Cj utterances using a°, Lo, L1, ™
for every session utterance U (m) do
Get probabilities Po,P; of utterance U (m) from Lo,L1
Find probability that U (m) was generated by state Sy
if m=1 (start of session) then
Yr(m) =me*Pe{U(m)}; k € {0,1}
else
Yk (m) = arg max;[v;(m-1) * a°(.k)] * P{U(m)};
jke{o,1}
end if

state=Sq

Yo(m) 2
state=S1

71 (m)

end for

Repeat E-step for C; utterances; replace a® with a*
M-step: Re-estimate states, class parameters

Build Ly, from all U(m) whose state = S; k € {0,1}

nosooN count(<i,j> state pairsinclass Cp) | - -
Update « (7"-]) T Y count(<i,k> state pairs in class Cp,) ° L] ko€
{0,1},n € {0,1}

end while
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terance independently of the rest, for which a Hard-Assignment Ex-
pectation Maximization (EM) scheme is better suited, as described
in Algorithm 1. At the completion of this re-assignment, each class
now contains both states. We, therefore, compute the proportions
of state occupancies for Cp and C sessions as decoded using the
models Lo and L.

4.3.2. LDBM

We initialize our model parameters as in Section 4.3.1 and obtain
converged estimates of behavioral states and the class parameters,
using the Viterbi-EM algorithm, as described in Algorithm 2. In this
model, the Hidden Markov Model (HMM) parameters need to be re-
estimated over iterations. Finally, each behavioral state is described
by the initial vector 7r, which contains the probability of the spouse
starting in each state, and its language model. Each class is now as-
sociated with a matrix that governs state transitions in that class; a°
for the Cy sessions, and o' for Cy. (4, j) represents the proba-
bility of a Cp-rated spouse transitioning to state j, given that he/she
was previously in state <.

5. BEHAVIORAL MODEL EVALUATION
In this section, we explain our evaluation procedure for the two dif-
ferent models and the two different fusion techniques used in DBMs.
5.1. SBM
For a given test session, we assign C1/Cy label to a speaker after
comparing the perplexities from his/her LMs. Given a set of M
utterances U={U (1), ..., U(M)} from a speaker during the test ses-
sion, we compute the LM perplexities based on Ly and L, and the
class label assignment is shown in equation 8.

C; = argmin Z PP;{U(m)} (8)
J m

Where

P P;{} represents perplexity score of utterance computed by LM L;
The results for SBM, obtained using a 1-gram LM, are shown in
Table 2.

5.2. DBM

Although both ADBM and LDBM allow state transitions, the scor-
ing mechanism is quite different in each case, as explained below.

5.2.1. ADBM

For a given test session, we perform hard-assignment of state labels
to utterances using Lo and L; and compute the state distribution.
For a set of utterances U={U (1), ..., U(M)} where the most com-
monly occurring state is found to be S, the ADBM chooses the
behavioral class that maximizes

C; = argmax P(Sk|C}) 9)
<

The performance of ADBM improves, on average, by around 1%
relative to the SBM, and the results are shown in Table 2.

5.2.2. LDBM

For a set of test utterances U, we decode based on HMMs of both
Co and C;. The label of the class whose prediction is associated
with the highest likelihood is assigned to the test file. This decision
scheme is shown in equation (10)

C; = argmax P(S;|U, o’ m) (10)
Aj

Where
U is set of test utterances, {U(1),...,U(M)}
S is the test state sequence predicted by class C,, {S(1), ..., S(M)}
Ar is set of HMM parameters of class C,, {a",Lo,L1,7}
The performance of LDBM improves, on average, by around 5.7%
relative to the SBM, and the results are shown in Table 2.

Model Husband Wife Average
SBM 79.29%  83.57%  81.43%
Activation-DBM  85.00%  79.29%  82.15%
Likelihood-DBM  83.57%  88.57% 86.07%

Table 2: Classification Accuracy of Behavioral Models using 1-
grams

6. DISCUSSION
The likelihood-DBM has the best average performance across both
spouses, at 86.07%, while the SBM has the lowest, with 81.43%.
This matches our expectations since the likelihood-DBM is less
rigid in its assumptions about behavioral changes. Thus, it is bet-
ter equipped to capture information about dynamic behavior, as
compared to the other two models.

While the SBM helps in identifying which state a person’s be-
havior more likely corresponded to, it is limited in its ability to
model changes in behavior within a session. The Activation-DBM
can model behavioral changes within the same session, and performs
well, but it allows rapid changes in behavioral states across succes-
sive utterances. We feel that such fast changes in behavior do not
realistically mirror the usual changes in human behavioral expres-
sion. In addition, there is no dependence on previous utterances,
meaning that context is ignored. The Likelihood-DBM avoids the
pitfalls associated with the first two models, and while more com-
plex, it is more accurate in predicting behavior from language. Note
that both dynamic implementations can likely be improved through
supervised learning and it is notable that the achieved performance
is through only loose semi-supervised clustering.

7. CONCLUSION

Automating the psychological evaluations can have a significant
impact by providing less expensive and more accurate methods
of behavioral coding. In this work, we proposed a Dynamic Be-
havior Model based scheme which models a spouse in couples’
therapy as transitioning through multiple behavioral states to ob-
tain an overall perception of negativity. We tested two models for
dynamically modeling the behavior: Activation-based DBM and
Likelihood-based DBM which outperformed the Static Behavioral
Model. Furthermore, the LDBM performed slightly better than
ADBM as it provided more freedom to the way behavior could be
expressed.

In this work, we addressed only two models of local information
integration towards deriving global behavioral descriptions. We plan
to extend this model to further incorporate dependencies amongst
spouses to model their behavioral influences as well as dependen-
cies among other codes apart from negativity. So far, we have only
considered two state models to predict binary behavior levels. We
will develop models with a finer behavior stratification and observe
its relation with the number of states. Finally, this model can be
employed in a range of application domains involving behavioral
evaluations in multi-party interactions.
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