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ABSTRACT

This paper proposes a new method for scheduling the charging of
plug-in electric vehicle’s (PEV) battery. The method is employed
in the demand side management of smart grids and has the goal of
reducing the cost of charging over a long time horizon. The prob-
lem of scheduling the PEV battery charging is modeled as a Markov
decision process with unknown transition probabilities. A fitted Q-
iteration batch reinforcement learning algorithm with kernel-based
approximation of the value iteration is proposed for learning the tran-
sition dynamics and solving the charging problem. The solution is
obtained based on the knowledge of the true day-ahead electricity
prices and predicted prices for the second day ahead. Simulation re-
sults using true pricing data demonstrate cost savings of 8%-40% for
the consumer.

Index Terms— Plug-in electric vehicles, smart charging, cost
reduction, demand side management, reinforcement learning.

1. INTRODUCTION

The development of new technologies for electric vehicle batteries,
the zero fuel consumption and low carbon emissions will make the
plug-in electric vehicles (PEVs) a highly important component of the
future transportation systems. The PEV charging, on the other hand,
will cause an increase of electricity consumption for many house-
holds and hence also an increase of their electricity costs. A high
penetration of PEVs will also affect the reliability of the power grid
through even more unbalanced load profiles. One approach to over-
come such problems could be the adoption of demand side manage-
ment programs for reducing the energy cost and balancing the load
in the power system. Smart charging programs can take advantage
of the electricity price variation and the load flexibility in order to
shift the electricity usage to times when the electricity prices and
load in the power grid are low. But in many cases the consumers
are slow and reluctant when it comes to changing their electricity
usage habits. A good incentive to convince consumers of adopting
smart charging programs would be considerable reduction of their
electricity costs.

Most of the existing methods for optimization of PEV charging
address the problems of balancing the load in the power grid [1]
and reducing the electricity costs [2]. There are also methods that
optimize the charging of PEVs in order to alleviate congestion in the
power grid [3] or explore the possibility of PEV participation to the
integration of renewable resources in the power system [4].

In this paper we propose a novel charging strategy of the PEV’s
battery that aims at reducing the cost of charging over a long time
horizon. The method takes advantage of the electricity price fluctu-
ations between two consecutive days in order to reduce the cost of
charging for the consumer. The proposed strategy not only schedules

the charging according to pricing incentives provided by dynamic
pricing, but also according to constraints imposed by the driving pat-
terns of the user. The price-based scheduling techniques for charging
the PEVs present in the literature consider the electricity price to be
known or given ahead for the entire scheduling period [1]. Other
methods build their own pricing schemes [2, 4]. These methods per-
form the scheduling over shorter time periods that are typically of
24 hours or less and use hourly-based scheduling of consumption.
The charging strategy proposed in this paper takes advantage of the
large battery capacities existing these days that do not necessarily
need daily charging and perform the scheduling of the PEV based on
daily time steps. The method operates in a two-day window and uses
known day-ahead prices for the current day and predicted prices for
the following day. The method also chooses the amount of energy
to be charged according to the constraints imposed by the known
driving patterns of the user in order to diminish the possibility of the
battery to deplete. The scheduling scheme considers only the hours
of the day when the car is at home and the electricity price is at its
minimum.

In this work the problem of scheduling the PEV battery charging
is formulated as a Markov decision process (MDP). This work repre-
sents a significant improvement of the work presented in [5]. In [5],
the PEV charging problem was solved using a Sarsa reinforcement
learning algorithm with eligibility traces [6]. A significant drawback
of this method is that the learned state-action values of the problem
are stored in lookup tables. Consequently, both the state variables
and actions need to be discretized. Hence, the algorithm requires a
large amount of time to reach convergence. The method proposed
in this paper overcomes these problems. We propose a fitted Q-
iteration batch reinforcement learning algorithm with kernel based
approximation of the value iteration for solving the PEV charging
problem. This method speeds up the convergence significantly and
works with continuous values of the MDP state variables. In order
to make the method suitable for solving the PEV charging problem,
we also present a new way of defining the rewards involved in the
learning stage. In this work, at each step of the MDP, the rewards are
determined according to the electricity price, current battery charge
level and consumption. For demonstrating the performance gains of
the proposed PEV charging approach we use true electricity pric-
ing data. The simulation results show that the cost of electricity for
charging the PEV can be reduced with 8% up to 40% when using the
method proposed in this paper.

The paper is organized as follows. Section 2 presents the system
model that formulates the charging problem as a MDP. The kernel-
based fitted Q-iteration algorithm that solves the charging problem
is presented in Section 3. The numerical results that show the perfor-
mance of the proposed method are presented in Section 4. Section 5
gives the conclusions.
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2. SYSTEM MODEL

This section describes how the PEV battery charging problem is for-
mulated as a MDP with unknown transition probabilities. A MDP
is a mathematical formulation for modeling decision making in un-
certain situations [7]. A MDP scenario involves a sequence of steps
and a set of states that describe the environment. For each state there
is a set of possible actions. An agent takes actions according to a
policy. A real valued reward function gives a reward for each action
taken in each state. A state transition function defines the transition
probability from one state to another.

In the case of the PEV battery charging problem the time steps
of the MDP are measured in days. The time horizon of the schedul-
ing is divided into two consecutive days denoted by d1 and d2. At
the beginning of day d1 the utility company gives the real market
electricity prices per kWh for the next 24 hours. We denote these
hourly price vector by p1. The electricity prices for the next day, d2,
are estimated using a price prediction algorithm and are denoted by
p2. A consumption parameter c indicating an estimated amount of
energy in kWh that the vehicle is expected to consume during day d1
is assumed to be known. Two vector parameters, h1 and h2, indicate
the hours of the day during which the car is expected to be at home
during the days d1 and d2, respectively. These two parameters could
be either selected by the user or learned from the driving patterns.

At each time step of the MDP, the state space of the battery
charging problem is composed of three variables. Let ω denote a
variable defining the day of the week corresponding to d1 and b a
continuous variable associated with the current charge level of the
battery at the beginning of d1. The battery capacity is limited by a
maximum value denoted by bmax. The third state variable ∆, which
is continuous as well, describes the difference between the minimum
hourly charging cost, if the charging would occur on day d1, and the
estimated minimum hourly charging cost for day d2. This variable
is calculated as:

∆1 = min
h∈h1

p1,h · cr − min
h∈h2

p2,h · cr, (1)

where by pi,h we denote the hth element of vector pi, i=1,2. Here
cr represents the hourly charging rate of the battery. The state of our
problem at the beginning of a day d1 is expressed as: x = [ω b ∆].

The action space of the PEV battery charging problem is dis-
crete. The battery capacity is assumed to be discretized into L lev-
els. An action is denoted by u and is defined by the operation that
controls the charging of the battery. The control operation chooses
the number of battery levels to be charged during day d1, where
u ∈ {0, ..., L− 1}. We denote by uL the amount of energy in kWh
corresponding to charging u battery levels.

The method that we propose for solving the PEV charging
problem is a batch reinforcement learning method called fitted Q-
iteration with kernel-based approximation of the value iteration [8].

3. FITTED Q-ITERATION WITH KERNEL BASED
APPROXIMATION OF THE VALUE ITERATION

Fitted Q-iteration is a batch reinforcement learning method in which
the unknown transition dynamics of the MDP are learned from an
available batch of transition samples:

F = {(xl, ul,yl, rl)|l = 1, ...,#F} . (2)

Here xl represents the current state , ul is the action taken in the
current state, rl is the reward obtained for taking the action ul in the

state xl and yl the next state that the system reaches. By #F we
denote the number of available samples in the set F.

The goal of batch reinforcement learning is to find a policy that
maximizes the rewards received by an agent when taking actions in
the current environment. Let πN be a control policy corresponding
to a temporal horizon of N steps. For a given initial state, the ob-
jective of our problem would be the maximization of the expected
discounted return over N steps when the system is controlled by pol-
icy πN :

JπN
N (x) = E

{
N−1∑
n=0

γnrn|x0 = x

}
, (3)

where γ represents the discount factor.
The purpose of the proposed algorithm is to approximate the

action-value function of a policy π. This function is also called Q-
function and represents the discounted return when taking an action
in a specific state according to the policy π. At the end of the learning
process, at each step n=0,. . . ,N-1, the optimal control policy that will
minimize the cost of charging is the one that satisfies:

µ∗ = argmax
u

Q(xn, u). (4)

The kernel-based approximation of the value iteration was intro-
duced in [9]. In order to obtain the kernel-based approximation of
the Q action-value consider that Su = {(xl,yl)|l = 1, ...,mu} is
the collection of all historical state transitions from the set of sam-
ples F where action u was taken. The kernel-based Q action-value
update during the learning process is [9]:

Q̂τ+1(y′l, u) =
∑

(xl,yl)∈Su

κ(xl,y
′
l)[rl + γmax

u
Q̂τ (y′l, u)], (5)

where κ(xl,x) is a weighting kernel function that depends on the
training set F, the state x and a kernel function φ+. The weighting
kernel function has the following expression:

κ(xl,x) =
φ+
(
‖xl−x‖

β

)
∑

xk∈F
φ+
(
‖xk−x‖

β

) , (6)

where β is a bandwidth parameter and controls the smoothness of
the kernel function.

The learning stage is completed when the difference between the
values of Q̂(y′l, u) from two consecutive iterations becomes almost
zero. The value of Q̂(x, u) for any new state x can be obtained from:

Q̂(x, u) =
∑

(xl,yl)∈Su

κ(xl,x)[rl + γQ̂(yl, u)]. (7)

We design the reward values r(x,u), needed for the learning
stage, to indicate a desired choice of actions at each step of our MDP,
when the scheduling of the PEV charging is performed. The pur-
pose is to minimize the cost of PEV charging to the consumer and to
prevent the battery from depleting. The increase or decrease of elec-
tricity prices between two consecutive days is indicated by the sign
of variable ∆. A positive sign of ∆ indicates a decrease in electric-
ity prices and a negative sign of ∆ shows an increase of electricity
prices. The reward values r(x,u) are chosen according to the value
of the pricing parameter ∆, the value of the battery state parameter
b and the value of the consumption parameter c. Table 1 gives a
description of how these values are chosen. The actual value of the
reward in case of that particular state x and action u is then:
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Table 1: REWARDS

∆ ≥ 0
b ≤ c r(x, u) > 0 if uL = umin
b ≥ c r(x, u > 0 if uL = umin = 0

∆ < 0
b ≤ c r(x, u) > 0 if umin + 1 ≤ uL ≤ umax
b ≥ c r(x, u) > 0 if 1 ≤ uL ≤ umax

r(x,u) =


a if uL = umin = 0,
z if r(x,u)> 0 as in Table 1,
0 otherwise,

(8)

where a and z are some real values proportional to the compensa-
tion that the agent is believed to deserve for taking the action ac-
tion u in the state x. Here umin denotes the amount of energy in
kWh corresponding to the minimum number of battery levels that
must be charged during a day such that the battery does not deplete
(umin ≥ c) and umax denotes the amount of energy corresponding
to the maximum number of battery levels that can be charged so that
b+umax ≤ bmax.

4. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed PEV charg-
ing method we consider the case of a PEV with battery capacity
bmax=24kWh. The range of the PEV is considered to be 160 km
and the battery charging rate is cr=6.6 kW. The variable ω, defin-
ing the day of the week when the scheduling occurs, takes a value
ω ∈ {1, ..., 7}. The daily battery consumption is simulated consid-
ering that during each day of the week the car is driven for a random
distance with a mean between 10 and 60 km. The following mean
distance values are considered in our simulations for each day of the
week: {50, 50, 60, 55, 50, 25, 10}. A uniform random variation
between 0 and ± 20 % is added to the calculated consumption. The
pricing parameter ∆ is limited to a continuous value within the inter-
val [-15¢,15¢]. The calculated values for ∆ which are less or greater
than the limiting values of this interval are set to -15¢ and 15¢, re-
spectively. The battery capacity is discretized into L=8 levels. The
action chosen by the proposed scheduling method at the beginning
of each day d1 represents the number of battery levels that should be
charged during that day: u∈{0,1,...,7}. The values a and z consid-
ered in the simulations for calculating the rewards r(x,u) in (8) are:
a=600 and z=u·100.

The simulations are performed using true pricing data taken
from the ISO New England database [10]. We employ a Bayesian
neural network [11] for obtaining the predicted prices. A set of
hourly true and predicted prices prices for 630 days was selected
starting from the 8th of August 2011 until the 28th of April 2013.
This set was divided into 4 different subsets of hourly pricing data.
Two subsets containing a total of hourly prices for 406 days were
used for the learning stage and the remaining hourly prices for 224
days were used for testing. In order to increase the robustness of
learning, the set of four-tuple samples F needed for the learning
stage was built of a mixed set of data composed by samples gener-
ated using true data prices and samples generated using simulated
data prices. The set of samples containing the true prices was gener-
ated using several thousand episodes based on the considered set of
prices. For building the simulated prices samples set we considered
a collection of possible prices such that the pricing parameter ∆
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Fig. 1: The mean square distance between the approximated Q̂ val-
ues from consecutive iterations shows that the proposed algorithm
reaches convergence after about 30 iterations.

would be within the interval [-15¢,15¢]. To these prices we assigned
a set of possible battery state variables within the interval [0, bmax].
The actions taken at each step were randomly chosen among the
set of actions that will always keep the battery charge level within
[0, bmax]. The Q action-value function is computed separately for
each day of the week. In order to build the subsets Su a number
of mu=3500 samples were chosen randomly for each action. The
data was then normalized such that the state variables take values
between 0 and 1.

The parameters of the fitted Q-iteration algorithm used for solv-
ing of the PEV charging problem are presented in Table 2. These
parameters were experimentally found most suitable among a set of
different kernel functions, distance norms and different values for
the bandwidth parameter. The weighting kernel function κ(xl,x) in
(6) is computed as the product kernel of the function corresponding
to the battery state variable b and the kernel function corresponding
to the pricing parameter ∆ : κ(xl,x) = κ(bl, b) · κ(∆l,∆).

Table 2: SIMULATION PARAMETERS

Discount factor γ 0.9

Kernel function φ+(·) e−(·) -Laplacian kernel
Bandwidth parameter βκb 0.01
Bandwidth parameter βκ∆ 0.01
Norm distance ‖ · ‖ | · | -Absolute distance

The the mean squared distance between the approximated Q̂
values from consecutive iterations was employed for evaluating
the convergence of the proposed algorithm: δ(Q̂N , Q̂N−1) =∑#F
l=1(Q̂N (xl, ul) − Q̂N−1(xl, ul))

2/#F. The variations of this
value over 100 iterations are presented in Figure 1. It is noticeable
that this criterion reaches a value close to zero after roughly 30 iter-
ations. This means that on average the approximated Q state-action
values reach convergence after roughly 30 iterations. For obtaining
an accurate convergence of all state-action values of the Q function
it is recommended to run the algorithm a little longer.

The evaluation of the proposed charging policy is performed us-
ing the policy obtained after running the fitted Q-iteration algorithm
for 100 iterations. The charging takes place during the hours of the
day d1 when the car is at home, given by the vector h1. The total
cost of charging the PEV battery during the day d1 is calculated as:

p(d1) =

ε∑
j=1

gj · cr + gε+1 · cr · cε, (9)
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Fig. 2: Using the proposed strategy 40% cost reduction is obtained
in comparison with the conventional strategy and a 8% reduction is
obtained in comparison with the smart charging strategy. The test
scenario with real prices only indicates that our solution is robust
to the price prediction errors. The charging costs need to be further
reduced with 15% in order to reach the global optimum solution.

where ε =
⌊
uL
cr

⌋
, cε = uL

cr
−
⌊
uL
cr

⌋
and g = [g1, . . . , g#h1 ]T

is the vector of hourly prices ordered in ascending order in which
gi = p1,h1,i , i = 1, . . . ,#h1. By #h1 we denote the length of the
vector h1 and h1,i is the value of its ith element.

Figure 2 shows the cumulative charging cost over 224 days when
the proposed PEV charging scheduling method in employed in com-
parison with other PEV charging policies. The performance curve
of the proposed strategy represents the average value over 20 dif-
ferent car usage realizations. These realizations were performed
using different car consumption values generated according to the
randomized process explained earlier. The conventional charging
policy fully charges the battery every day at random hours without
considering the fluctuations of electricity price. A smart charging
strategy, considered for comparison purpose, implies that the driver
fully charges the battery every day during the hours when the price
is minimum. Another plotted curve shows a lower bound defined by
the cumulative price of charging when the global optimal charging
strategy would be used. This strategy considers the hypothetical sit-
uation when the true electricity price and the car consumption would
be known for the entire time span of 224 days. The figure shows
as well a scenario for testing the proposed strategy when true elec-
tricity prices are used also for the second day ahead, instead of the
predicted prices. We can observe from the plots that the gaps be-
tween the charging costs increase as a function of time. Roughly
a 40% decrease in charging costs could be observed when the pro-
posed method is used instead of the conventional charging policy.
Even if the battery is fully charged daily at minimum price of the
day, the driver still saves money when using the novel strategy. The
reduction in the cost of charging being about 8% in comparison with
the other smart charging strategy. For reaching the global optimal
solution the charging cost of the proposed strategy would still have
to be decreased by another 15%, but we can still say that our strategy
that uses one day predicted prices brings us significantly closer to the
global optimal solution. Observing the solution of the test scenario
with true prices only, we can see that this curve nearly overlaps the
solution of the proposed strategy. This shows that the solution of the

proposed charging strategy is robust to some degree of error in the
price prediction.

5. CONCLUSION

A novel method for scheduling the EV battery charging has been
proposed in this paper. The method operates in a two-day window
and involves the knowledge of true day-ahead prices and predicted
prices for the second day ahead. The goal of the proposed method
for scheduling the PEV charging is to decrease the cost of charg-
ing over an infinite time horizon. The user’s driving patterns are
taken into account in the scheduling technique in order to diminish
the probability of the battery to deplete. The problem of scheduling
the PEV charging has been formulated as a MDP. In comparison to
the previous work [5], a new method for solving the PEV charging
problem has been proposed here. This method employes a fitted Q-
iteration batch reinforcement learning algorithm with kernel based
approximation of the value iteration. The main advantages of this
new method are that it uses continuous values of the MDP state vari-
ables and converges fast to the solution. We also presented a new
method of defining the rewards involved in the learning stage. The
evaluation of the proposed PEV charging scheme was performed us-
ing true pricing data. Simulations show that the method reduces the
charging price with a value between 8% and 40%.
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