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ABSTRACT

We present a new full Bayesian approach for language mod-
eling based on the shared Dirichlet priors. This model is
constructed by introducing the Dirichlet distribution to repre-
sent the uncertainty of n-gram parameters in training phase
as well as in test time. Given a set of training data, the
marginal likelihood over n-gram probabilities is illustrated
in a form of linearly-interpolated n-grams. The hyperpa-
rameters in Dirichlet distributions are interpreted as the prior
backoff information which is shared for the group of n-gram
histories. This study estimates the shared hyperparameters
by maximizing the marginal distribution of n-gram given the
training data. Such Bayesian language model is connected to
the smoothed language model. Experimental results show the
superiority of the proposed method to the other methods in
terms of perplexity and word error rate.

Index Terms— Bayesian learning, language model,
model smoothing, optimal hyperparameter

1. INTRODUCTION

Statistical language model (LM) plays an important role in
many signal and information processing systems including
machine translation, document classification, writing correc-
tion, bio-informatics, and speech recognition. LM based on
n-gram aims to calculate the probability of a word string by
multiplying the probabilities of a word wi conditional on its
preceding n − 1 words wi−1i−n+1 = {wi−n+1, · · · , wi−1}.
Traditionally, the maximum likelihood (ML) is applied to
estimate n-gram parameters θML = {pML(wi|wi−1i−n+1)}. In
general, the weaknesses of ML n-gram model are twofold
[1, 2]: (1) insufficient training data for estimation of n-grams
for so many word combinations in wii−n+1, and (2) lack of
long-distance information due to the n-gram window. In
[3, 4], the modified Kneser-Ney LM (MKN-LM) was pro-
posed to tackle the first weakness by backoff smoothing or
interpolation smoothing based on the lower-order model. LM
smoothing could be also implemented through the hierar-
chical Pitman-Yor language model [5, 6]. To deal with the
second weakness, the recurrent neural network LM (RNN-
LM) [7, 8] and the cache Dirichlet class LM (cDC-LM) [9]
were constructed by combining the information from the re-

current hidden states or through the large-span topics [10],
respectively.

Basically, the frequency estimator in higher-order LM
has large variance, because there are so many possible word
combinations in n-gram event wii−n+1 = {wi−1i−n+1, wi} that
only a small fraction of them have been observed in the
data. A simple linear interpolation scheme for an n-gram is
performed by interpolating ML higher and lower models [11]

λpML(wi|wi−1i−n+1) + (1− λ)pML(wi|wi−1i−n+2) (1)

where 0 ≤ λ ≤ 1 denotes the interpolation weight which
was determined for individual history wi−1i−n+1 from valida-
tion data. In this study, we compensate for the variations in
the estimated n-gram parameters due to insufficient training
data accordance to the Bayesian framework [12, 13]. The
uncertainty of n-gram parameters θ = {p(wi|wi−1i−n+1)} is
characterized by a Dirichlet prior with the shared hyperpa-
rameters α. The marginal n-gram over a Dirichlet prior of
n-gram parameters is constructed [14]. The optimal hyper-
parameters are estimated by maximizing the marginal likeli-
hood. This Bayesian LM can be interpreted as the smoothed
n-gram. Different from the heuristic LM smoothing [3, 4], a
full Bayesian language model is realized to carry out interpo-
lation smoothing for LM without the need of validation data.
A set of experiments are conducted to illustrate the perfor-
mance of LM smoothing based on the Bayesian LM.

2. BAYESIAN LEARNING FOR N -GRAMS

2.1. Dirichlet prior and posterior

N -gram model parameters θ = {θi|h} = {p(wi|wi−1i−n+1)}
are known as the multinomial parameters which are used to
predict n-gram events of word wi appearing after history
words h = wi−1i−n+1. Assuming there are V multinomial
parameters in θ = {θi|h} for V vocabulary words where
0 ≤ θi|h ≤ 1 and

∑V
i=1 θi|h = 1. We are interested in

Bayesian language model where the prior density of multi-
nomial parameters is introduced. The conjugate prior over
multinomial parameters θ is specified by a Dirichlet prior
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with hyperparameters α = {αi|h} in a form of

p(θ|α) = Dir(θ|α) =
1

Z(α)

∏
h

V∏
i=1

(θi|h)αi|h−1 (2)

where the normalization term is expressed by

Z(α) =
∏
h

[∏V
i=1 Γ(αi|h)

Γ(
∑V
i=1 αi|h)

]
. (3)

Dirichlet distribution was used to represent the multino-
mial topics for document modeling [15] and the multino-
mial classes for language modeling [9]. The mean vector of
Dirichlet distribution is obtained by E(θ) = α∑

h

∑V
i=1 αi|h

.
Given the training corpus D, the posterior distribution is
derived as another Dirichlet distribution

p(θ|D,α) =
p(D|θ)p(θ|α)

p(D|α)

=

∏
h

∏V
i=1(θi|h)c(θi|h)+αi|h−1

Z(c + α)
= Dir(θ|c + α)

(4)

with the updated hyperparameters c+α. In Eq. (4), each entry
c(θi|h) of c = {c(θi|h)} denotes the number of occurrences
of the n-gram events θi|h observed in training dataD. In [16],
the maximum a posteriori (MAP) estimation was applied for
task adaptation where MAP point estimates θMAP were ob-
tained by maximizing the posterior distribution p(θ|D,α).

2.2. Marginal likelihood

To fulfill full Bayesian framework [13], we consider the un-
certainty of n-gram parameter θi|h = p(wi|wi−1i−n+1) and cal-
culate the marginal distribution from training data D over all
values of parameter θ

p(wi|wi−1i−n+1,D,α) =

∫
p(wi|wi−1i−n+1,θ)p(θ|D,α)dθ

=

∫
θi|h · Dir(θ|c + α)dθ =

c(θi|h) + αi|h∑V
j=1[c(θj|h) + αj|h]

(5)

which is also known as the distribution estimate of an n-gram.
This distribution is equivalent to calculate the mean of n-gram
parameter θi|h based on the posterior distribution p(θ|D,α)
as given in Eq. (4). In this study, we would like to reverse-
engineer the language model smoothing method in Eq. (1)
from Bayesian perspective by using the Bayesian language
model in Eq. (5).

3. BAYESIAN LANGUAGE MODEL

3.1. Interpolation-smoothed language models

It is important to investigate the physical meaning of Bayesian
LM. The hyperparameter αi|h in Dirichlet prior is seen as a

pseudo-count for an n-gram event wii−n+1 = {wi, wi−1i−n+1}.
Basically, the marginal distribution is an integration of the
prior statistics α and the training data D or equivalently the
counts of occurrences c because

c(wii−n+1) + α(wii−n+1)∑
wi

[
c(wii−n+1) + α(wii−n+1)

] = λwi−1
i−n+1

×pML(wi|wi−1i−n+1) + (1− λwi−1
i−n+1

)
α(wii−n+1)∑
wi
α(wii−n+1)

(6)

where pML(wi|wi−1i−n+1) is the ML model and

1− λwi−1
i−n+1

=

∑
wi
α(wii−n+1)∑

wi

[
c(wii−n+1) + α(wii−n+1)

] (7)

implies the interpolation weight for prior statistics. We can
see that marginal distribution is interpreted as the smoothed
n-gram based on the interpolation smoothing as shown in
Eq. (1). The relation between Bayesian LM and interpolation-
smoothed LM is shown. A reasonable solution to αi|h could
be determined from the (n− 1)-gram event wii−n+2.

In addition, MKN-LM [3, 4] was realized as a kind of
interpolation-smoothed LM by replacing the scaling factor
λwi−1

i−n+1
for higher-order ML model in Eq. (6) by using a

fixed discount 0 ≤ d ≤ 1

max{c(wii−n+1)− d, 0}∑
wi
c(wii−n+1)

+ (1− λwi−1
i−n+1

)pML(wi|wi−1i−n+2).

(8)

The interpolation weight for lower-order ML model is empir-
ically obtained so as to meet the distribution sum up to 1

1− λwi−1
i−n+1

=
d ·N1+(wi−1i−n+1�)∑

wi
c(wii−n+1)

(9)

where N1+(wi−1i−n+1�) = |{wi : c(wi−1i−n+1wi) > 0}| rep-
resents the number of unique words that follow wi−1i−n+1.
Bayesian LM in Eq. (6) and MKN-LM in Eq. (8) are both
interpolation-smoothed LMs but in different realizations.
Bayesian LM is known as a kind of smoothed LM where the
hyperparameters α are estimated from training data D.

3.2. Estimation for the shared Dirichlet priors

We aim to find optimal hyperparameters or Dirichlet priors α
of Bayesian LM from training data D. According to the ev-
idence framework [12, 13], we maximize the evidence func-
tion to find

α̂ = arg max
α

p(D|α) (10)

where the evidence function is derived by referring to Eq. (4)

p(D|α) =
Z(c + α)

Z(α)
=
∏
h

[∏V
i=1 Γ(c(θi|h) + αi|h)

Γ(
∑V
i=1 c(θi|h) + αi|h)

×
Γ(
∑V
i=1 αi|h)∏V

i=1 Γ(αi|h)

] (11)
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which is arranged as a ratio of normalization constants of pos-
terior probability p(θ|D,α) over prior probability p(θ|α).

Similar to the cDC-LM in [9], we introduce latent class
k for individual history h and estimate the shared Dirichlet
priors α = {αk} = {αi|k} for the clusters or the classes of
n-gram histories. We estimate the individual parameter αi|k
through solving

∂

∂αi|k
log p(D|α) =

∑
h(k)

[
Ψ(c(θi|h) + αi|k)−Ψ(αi|k)

−Ψ

( V∑
i=1

c(θi|h) + αi|k

)
+ Ψ

( V∑
i=1

αi|k

)]
= 0

(12)

where h(k) denotes all histories h corresponding to latent
class k and Ψ(x) , ∂

∂x log Γ(x) defines the digamma func-
tion. We may implement the conjugate gradient algorithm to
estimate α̂i|k or apply some approximation to derive an ex-
plicit optimization algorithm.

In this optimization, we consider
∑N
i=1 αi|k > 1, αi|k <

1 and solve Eq. (12) by applying the recursive formula of
digamma function Ψ(x+ 1) = Ψ(x) + 1

x to yield

Ψ(c(θi|h) + αi|k)−Ψ(αi|k) =
1

c(θi|h)− 1 + αi|k

+
1

c(θi|h)− 2 + αi|k
+ · · ·+

1

2 + αi|k
+

1

1 + αi|k
+

1

αi|k

=
1

αi|k
+

c(θi|h)∑
c=2

[
1

c− 1 + αi|k

]

≈
1

αi|k
+

c(θi|h)∑
c=2

[
1

c− 1
−

αi|k

(c− 1)2
+O(α2

i|k)

]

=
1

αi|k
+

c(θi|h)∑
c=2

1

c− 1
− αi|k

c(θi|h)∑
c=2

1

(c− 1)2
+O(α2

i|k) .

(13)

Here, c(θi|h) ≥ 2 is assumed and a Taylor series is introduced
to approximate the function f(α) = 1

c−1+α at point α = 0.
Further, the remaining terms of Eq. (12) are approximated

by Ψ(x) ≈ log(x)− 1
2x +O

(
1
x2

)
so as to obtain

∑
h(k)

[
Ψ

( V∑
i=1

c(θi|h) + αi|k

)
−Ψ

( V∑
i=1

αi|k

)]

≈
∑
h(k)

log

[∑V
i=1 c(θi|h) + αi|k∑V

i=1 αi|k

]
+

1

2

×
∑
h(k)

 ∑V
i=1 c(θi|h)(∑V

i=1 αi|k

)(∑V
i=1 c(θi|h) + αi|k

)
 = S(αk).

(14)

Denote the number of contexts h of class k occurring before
word i by Vi|k =

∑
h(k)(1). We compute the quantities:

Gi|k =
∑
h(k)

c(θi|h)∑
c=2

1

c− 1
, Hi|k =

∑
h(k)

c(θi|h)∑
c=2

1

(c− 1)2
. (15)

Finally, the optimal hyperparameter corresponding to word i

with history h in class k should satisfy [14]

α̂i|k =
2Vi|k

S(αk)−Gi|k +
√

(S(αk)−Gi|k)2 + 4Hi|kVi|k

= Fi(αk)

(16)

which is derived as a root of a quadratic function of α−1i|k from
Eqs. (12)(13). This is an implicit solution because the right-
hand-side of Eq. (16) is also function of αk = {αi|k}. Such
an implicit solution converges fast in the implementation.

4. DISCUSSION AND EVALUATION

4.1. Discussion

We illustrate five properties of the Bayesian LM. First of
all, the sum of hyperparameters γk =

∑
i αi|k measures the

sharpness of the distribution. A large γk produces a distribu-
tion of components {θi|h}Vi=1 which have similar values. For
small γk, few components in {θi|h}Vi=1 receive overwhelm-
ing share of the probability mass. Second, the estimated
hyperparameter αi|k is closely related to Vi|k, the number
of histories h in class k for prediction of word i. Three,
instead of finding interpolation weight λwi−1

i−n+1
or λh via

cross-validation, the Bayesian LM only adopts the training
data in model construction. Four, finding αi|k in Bayesian
LM requires computation time linear in the size of vocabu-
lary V , but finding λh in [11] requires time linear in the size
of training corpus. Five, the shared hyperparameter αi|k in
Eq. (16) is calculated by using the higher-order information
from the histories under the same class h(k). This is differ-
ent from the standard interpolation-smoothed LM in Eqs. (1)
and (8) based on the lower-order LM where the higher-order
information is not considered. Notably, the proposed LM is
also different from the hierarchical Dirichlet language model
(HD-LM) in [14] where the individual hyperparameters αi|h
are estimated for different n-gram parameters θi|h. HD-LM
could not be implemented for unseen n-grams θi|h in training
data D which definitely happen in real-world applications.

4.2. Experimental setup

The 1987-1989 Wall Street Journal (WSJ) corpus containing
86K documents with 38M words was utilized to evaluate dif-
ferent methods for continuous speech recognition (CSR). The
metrics of perplexity and word error rate (WER) (%) were
evaluated. The SI-84 training set with 15.3 hours was used to
estimate HMM parameters based on 39-dimensional MFCC-
based feature vectors. Triphone models were built for 39
phones and one background silence. Each triphone model
had three states and eight Gaussians. The HTK toolkit [17]
was used for HMM training and lattice generation. The SRI
toolkit [18] was applied to train baseline MKN trigrams [3, 4].
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The 100-best lists were generated by using baseline trigrams.
Various LMs were linearly interpolated with a baseline tri-
gram system and were employed for N-best rescoring. The
5K and 20K non-verbalized pronunciation, closed vocabular-
ies were adopted. A total of 330 and 333 test sentences were
sampled from November 1992 ARPA CSR benchmark test
data for vocabularies of 5K and 20K words, respectively. A
small set of sentences sampled from the WSJ development set
were used to select the interpolation weight λh. For compara-
tive study, we carried out the cDC-LM [9] and the MKN-LM
[3, 4] which tackled the issues of insufficient training data and
long-distance information. However, the proposed Bayesian
LM did not consider long-distance information. To compen-
sate this weakness, we combined it with RNN-LM by using
linear interpolation as denoted by B-LM. Number of hidden
neurons in RNN-LM was 300. We also implemented the neu-
ral network LM (NN-LM) [19] with 100 and 200 neurons in
the first and the second hidden layers, respectively. The shar-
ing of Dirichlet prior parameters αi|k in B-LM was done by
following the same Dirichlet classes k for trigram histories h
we learned by using cDC-LM.
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Fig. 1. Perplexity vs. number of classes using different LMs.

4.3. Evaluation for model perplexity

Figure 1 demonstrates the perplexities of using baseline
MKN-LM, NN-LM, RNN-LM, cDC-LM and B-LM with
different number of Dirichlet classes K. WSJ corpus is used.
The results of cDC-LM and RNN-LM are better than that of
NN-LM since NN-LM does not learn long-distance informa-
tion. Also, cDC-LM attains lower perplexity than RNN-LM
when K = 150 and K = 200. Among different LMs, the
lowest perplexity is achieved by B-LM for most cases of K.
B-LM performs well for LM smoothing. The shared hyperpa-
rameters in B-LM has the potential to deal with the overfitted
LM due to abundant samples.
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Fig. 2. Comparison of WERs (%) for different LMs with dif-
ferent sizes of training data.

Table 1. Comparison of WERs (%) for different LMs with
different vocabulary sizes V .

MKN-LM NN-LM cDC-LM RNN-LM B-LM
V=5K 5.38 5.18 4.93 4.92 4.89
V=20K 12.89 12.20 11.01 10.95 10.08

4.4. Evaluation for word error rate

Figure 2 shows the WERs of different LMs with different
sizes of training data. We fix K = 200 for cDC-LM and
B-LM. WSJ is adopted. The issue of small sample size is
examined. WERs were reduced when increasing the amount
of training data. The reduction of WER of using cDC-LM,
RNN-LM and B-LM is significant compared to that of using
MKN-LM and NN-LM when the amount of data is as small
as 6M words. Table 1 further reports the WERs of different
methods by using vocabulary sizes of 5K and 20K. We do
consistently see the improvement of using B-LM when com-
pared with NN-LM, cDC-LM and RNN-LM.

5. CONCLUSIONS

We have presented the Bayesian LM with the shared Dirich-
let priors and connected its relation to the interpolation-
smoothed LM. This model was derived as a distribution
estimate of n-grams which considered the randomness of
n-gram parameters in language modeling. We tackled the
issue of model regularization and compensated for the varia-
tions or uncertainties in n-gram estimation due to real-world
condition in natural language. The shared prior parame-
ters were estimated to implement the smoothed Bayesian
LM for speech recognition. The computation cost was lim-
ited. Experiments on different conditions show consistent
improvement over the state-of-art LMs.
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