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ABSTRACT
Optimum scheduling is a key objective in many communica-
tions systems where different users have to share a common
resource. Typically, centralized implementations are capable
of guaranteeing certain fairness. In our approach, we follow a
different path modeling the scheduling process as a dynamic
infinite horizon discrete-time game. This formulation allows
us to include any kind of dynamics and distributed implemen-
tations. Despite, these games are very difficult to solve, we
are able to show that they are in fact dynamic potential games
equivalent to a non-stationary multivariate optimum control
problem. The dynamic control problem is solved via an aug-
mented Bellman equation including time as an extra state.

Index Terms— Optimum Scheduling, Fairness, Dynamic
Potential Games, Augmented Bellman Equation

1. INTRODUCTION

Radio resources are usually of restricted use in many commu-
nication systems. Thus, letting several users make use simul-
taneously of a single resource in a wireless communication
system implies in many cases limiting the capacity of the sys-
tem by interference. Through a different approach [1, 2], we
could consider a set of users being scheduled by the base sta-
tion and improve the system capacity instead of limiting it.
Scheduling strategies may follow two different approaches.
The base station example is a centralized approach, given that
there is a network element that schedules the different users
in a coordinated way under some particular knowledge about
the network state. Decentralized approaches would leverage
the network burden given that a set of network elements de-
cide their own scheduling strategies based on whatever infor-
mation they have available. The decentralized approach in-
trinsically underperforms the centralized approach, however
the information needed for the scheduling of the users maybe
significantly lower.

In both cases, we need to set, for each of the users, a utility
function to be maximized, knowing that the utility functions
depends on the users transmission strategies or actions. Under
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a scheduling umbrella, a reasonable choice for the user utility
function is any that depends on its achievable rate. Under a
normalized noise, this is defined as

Rit = log

1 +

∣∣hit∣∣2 uit
1 +

∑
j 6=i

∣∣∣hjt ∣∣∣2 ujt


where for user i at time t, hit is the fading channel and uit is
the power transmitted.

Decentralized scheduling strategies can be solved by
means of the definition of a non cooperative game that would
norm what resources should each user access. Decentralized
scheduling strategies need to be provided, among others, in
scenarios such as ad-hoc networks [3, 4], cognitive radio
scenarios [5, 6], uplink [7] and distributed scenarios [8].

System evolution and finite resources lead in many cases
to dynamic scenarios where for example the channel, batter-
ies or even the utility function change with time. In these
cases special attention should be given to the formulation of
the game by means of a dynamic game and several results
are already available in the literature for access methods [9],
network selection [10] or packet delivery ratio [11].

In this work we aim to implement distributed schedul-
ing in a changing environment and we will formulate the
process as a competitive dynamic game. The approach we
propose is quite novel compared to previous applications of
dynamic games to wireless communications because we are
able to include any kind of dynamics (channel varying char-
acteristic, utility variation or system dynamics) to consider
more realistic scenarios. Unfortunately, these games are quite
complicated because each user has to solve the correspond-
ing optimum control problem as best response to other users
strategies in an iterative game. We propose to follow here
a different approach and extend the concept of (static) po-
tential games to include dynamics (dynamic potential game,
DPG). With this aim we formulate an extended Euler equa-
tion in term of states and actions and relate the existence of an
equivalent Multivariate Optimum Control Problem (MOCP)
to the integrability or conservativeness of an associated vec-
torial field. This approach extends our previous work [12] by
allowing system and utility function dynamics. The resulting
non stationary problem is solved using an MOCP, augmenting
the dimension of the state vector including time, to perform a
discrete solution of the Bellman equation.
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2. PROBLEM STATEMENT

In a dynamic game we have a set of players Q = {1 . . . Q},
where for each player i its utility function at discrete time
t is given by πi (xt,ut, t), and it depends both on the sys-
tem state xt =

(
x1t . . . x

i
t . . . x

Q
t

)
, with xit ∈ X i, and on

the set of actions of all players, denoted in vector form as
ut =

(
u1t . . . u

i
t . . . u

Q
t

)
with uit ∈ U i. It can be noticed that

in the most general case, both the utility function and the sys-
tem equation are time dependent. The discrete time dynamic
game can be represented ∀i as:

V i (x0) = max
{ui

t}

∞∑
t=0

βtπi (xt,ut, t)

s.t. : xt+1 = f (xt,ut, t) , gi (xt,ut, t) ≤ 0,x0 known

(1)

where xt+1 = f (xt,ut, t) is the system state equation with
components xit+1 = f i (xt,ut, t) defining a Markovian
model, parameter β < 1 is the discount factor and some extra
constraints are included gi (xt,ut, t) ≤ 0 because in most
of the applications states and actions are constrained. Each
user i intends to find the optimum sequence of actions

{
uit
}

that maximizes its value function V i (x0) expressed in terms
of its own current and future (discounted) utility function
πi (xt,ut, t). Solving these problems requires finding the
sequence of actions {u∗t } that provides a Nash equilibrium,
whose definition is similar as in static games:

∞∑
t=0

βtπi
(
xt, u

∗i
t ,u

∗−i
t , t

)
≥
∞∑
t=0

βtπi
(
xt, u

i
t,u
∗−i
t , t

)
∀i

where the equation must hold ∀uit ∈ Ui and where u∗it ∈ U i
represents the optimum action of user i at time t and u∗−it is
the same concept for all users except i .

The objective of this paper is to show that, under some
hypotheses, the open loop game in (1) is in fact a DPG and
can be solved by an equivalent non stationary MOCP

V (x0) = max
{ut}

∞∑
t=0

βtΠ (xt,ut, t)

s.t : xt+1 = f (xt,ut, t) , gi (xt,ut, t) ≤ 0 ∀i,x0 known

giving some new insights about the existence and relationship
between potential functions such as Π (xt,ut, t) and conser-
vative vector fields. To the best of our knowledge, our deriva-
tions follow a quite different path from previous results in the
literature, providing very general results.

A reduced form for the system state equation in (1) is pos-
sible when the action set can be expressed in terms of the cur-
rent and next states, i.e. uit = ζ

(
xt,xt+1,u

−i
t , t

)
. In [13, 14]

a rigorous description of the game in this reduced form is
given and by means of the Euler equation (EE) the concept
of dynamic potential game shows up as a reformulation of the
original papers by Dechert [15]-[17]. However, under a gen-
eral perspective, it may not be possible to find the reduced

form and therefore, a more general theory is highly desirable.
In [16], this scenario is considered and the conditions are pre-
sented from a Hamiltonian perspective. More recently, [18]
shows rigorously the general procedure for the continuos time
model also exploiting the Hamiltonian perspective. Our con-
tribution follows a different approach starting with the pro-
posal of a more general Euler equation (GEE) that is able to
represent utility functions in terms of states and actions in-
stead of the reduced form just in terms of states. In chapter
6 of [19] some hints about this formulation for the continuos
time optimum control problem are given. Our second impor-
tant contribution follows the conservative vector field frame-
work established by Monderer/Shapley [20] and Slade [21] to
define static potential games, to further generalize and extend
the potential game scenario to a dynamic environment.

2.1. Euler equation in general form: solving the game

Following Sage’s framework [19] (defined for control prob-
lems but also applicable to games) we define the Lagrangian
of the value function in (1):

Li
(
xt,ut, λ

ii
t , λ

ij
t , t
)

=

∞∑
t=0

βt
(
πi (xt,ut, t) +

+
∑
∀j

λijt+1

(
−xjt+1 + f j (xt,ut, t)

)
For simplicity, the constraints gi (xt,ut, t) ≤ 0 ∀i are not
considered in this analysis as the game and the MOCP share
the same constraint set. The general Euler equation is a set of
two equations:

∂πi (xt,ut, t)

∂xit
+
∑
∀j

λijt+1

∂f j (xt,ut, t)

∂xit
− λiit = 0 (2)

∂πi (xt,ut, t)

∂uit
+
∑
∀j

λijt+1

∂f j (xt,ut, t)

∂uit
= 0 (3)

2.2. Euler equation in general form: solving the MOCP

If we proceed in a similar way analyzing the MOCP we have:

L
(
xt,ut, λ

i
t, t
)

=

∞∑
t=0

βt (Π (xt,ut, t) +

+
∑
∀i

λit+1

(
−xit+1 + f i (xt,ut, t)

))
The general Euler equation is also a set of two equations that
can be solved given:

∂Π (xt,ut, t)

∂xit
+ λit+1

f i (xt,ut, t)

∂xit
− λit = 0 (4)

∂Π (xt,ut, t)

∂uit
+ λit+1

f i (xt,ut, t)

∂uit
= 0 (5)
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2.3. Conservative vector field

The concept of conservative vector field is the core of the
analysis of games modeled as potential functions. It converts
the game into a standard optimization problem in the static
case and into an MOCP for the dynamic case game. Follow-
ing the pioneering works of [20] and [21], the definition of a
static game is given by

max
ui∈Ui

πi
(
ui,u−i

)
∀i,

the condition for this game to be of the potential is:

∂2πi (u)

∂ui∂uj
=
∂2πj (u)

∂ui∂uj
∀i, j

and the potential function can be found by solving the line
integral

Π (u) =

Q∑
i=1

∫
∂πi (u)

∂ui
dui

Roughly speaking, in [20, 21] it is stated that the condi-
tion of existence of a potential function is that the set of in-
dividual utility functions is in fact a conservative vector field
~F (u) =

(
∂π1

∂u1
∂π2

∂u2 · · · ∂πQ

∂uQ

)
and the existence of the

potential function is related to the integrability of this field
that is guaranteed as it is conservative. The extension to dy-
namic games is conceptually straightforward: instead of the
optimization conditions (zero gradient) already stated we can
apply optimality conditions in terms of the GEE and the po-
tential function would lead to an equivalent MOCP.

2.4. Equivalence between the game and the MOCP

If we compare (2)-(3) with (4)-(5) we reach a preliminary
conclusion: λijt must be irrelevant in the optimization pro-
cess. This is the first condition that Dragone [18] states, now
confirmed by our analysis. Furthermore, we can establish that
the equivalence between the dynamic game and the control
problem is related to the existence of a conservative vector
field such that the gradient of the potential function:

∇Π (xt,ut, t) =
(

∂π1

∂x1
t
· · · ∂πQ

∂xQ
t

∂π1

∂u1
t
· · · ∂πQ

∂uQ
t

)
The conditions for this existence were defined by Dechert in
[16] and reproduced in [12]. The equivalent MOCP is ob-
tained solving the corresponding line integral:

Π (xt,ut, t) =

Q∑
i=1

∫
∂πi (xt,ut, t)

∂xit
dxit +

∫
∂πi (xt,ut, t)

∂uit
duit

3. SCHEDULING SCENARIOS MODELLED AS DPG

We propose next two utility functions as interesting candi-
dates for decentralized dynamic schedulers. Furthermore, as
both games are shown to be DPG, the analysis is affordable.
In any of the proposed scenarios each user is allowed a maxi-
mum transmitted power U imax and the starting rate is given by
X iini.

3.1. Proportional Fair Scheduling

Proportional Fair (PF) schemes provides a good balance be-
tween system throughput and fairness, and serves first to those
users whose average achieved rates are below their requested
rate. We propose a game under this same philosophy:

max
{ui

t}

∞∑
t=0

βtxit s.t. :xit+1 =

(
1− 1

t

)
xit +

1

t
Rit,

0 ≤ uit ≤ U imax, xi0 = X iini ∀i

where basically each user intends to maximize its average
rate, that is the actual state xit. Taking into account that dif-
ferent users have uncorrelated fading, it is expected a certain
degree of fairness. It is straightforward to show that this game
fulfills Dechert conditions [16, 12] and the equivalent MOCP

max
{ut}

∞∑
t=0

βt
Q∑
i=1

xit s.t. : xit+1 =

(
1− 1

t

)
xit +

1

t
Rit,

0 ≤ uit ≤ U imax, xi0 = X iini ∀i

(6)

3.2. Equal-Rate scheduling algorithm

Considering now that the actual state of user i is the accumu-
lated rate, we define a strategy where we try to keep the user
rates as close as possible performing some kind of equal rate
(ER) optimization:

max
{ui

t}

∞∑
t=0

βt

(1− α)Rit + α
∑
j 6=i

(
xit − x

j
t

)2
s.t. :xit+1 = xit +Rit, 0 ≤ uit ≤ U imax, xi0 = X iini ∀i

where α weights different contributions according to the de-
sign priorities. The equivalent MOCP is given by

max
{ut}

∞∑
t=0

βt

(
(1− α) log

(
1 +

Q∑
i=1

∣∣hit∣∣2 uit
)

+

+α

Q∑
i=1

∑
j>i

(
xit − x

j
t

)2 s.t. : xit+1 = xit +Rit,

0 ≤ uit ≤ U imax, x
i
0 = X iini ∀i

(7)

where the first equivalence is show in [12] and the second is
straightforward.

4. COMPUTATIONAL METHODS AND RESULTS

There are two main difficulties to numerically solve the
MOCP in (6) and (7) i) they are non stationary as they include
time dependent parameters and also ii) the users operate in
a state space and have utility functions that are continuous.
However, we can overcome the non stationary issue by aug-
menting the state space to include the time as a new feature
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of the state [22]. We define a state x that belongs to the state
space X =

(
X 1 . . .X i . . .XQ

)
. The augmented state space

becomes X̃ = (X ,K), where K denotes the set of nonnega-
tive integers, and x̃ = (x, t) =

(
x1 . . . xi . . . xQ, t

)
∈ X̃ is

the augmented state.
Now, if we assume that the cost per stage is bounded,

|Π(x̃,u)| ≤ M , for all (x̃,u) ∈ X̃ × U with U =(
U1 . . .U i . . .UQ

)
and some scalar M , and the discount

factor satisfies 0 < β < 1, then we can use Dynamic Pro-
gramming (DP) methods [22] to find the optimal actions for
these problems. For that we reformulate the MOCP using the
Bellman equation for every possible state:

V (x̃) = max
u∈U

Π(x̃,u) + βV (f (x̃,u))

where it should be noted that now both Π (x̃,u) and f (x̃,u)
are defined over the extended state space. Still, if the state
space and the utility function are continuous, then DP meth-
ods becomes impractical. Two common approaches for deal-
ing with continuous state spaces are: to define an appropriate
grid on the continuous space or to find a parametric approx-
imation of the value function V (x̃). Given that V (x̃) is not
available, the grid approach is more effective. Thus we sam-
ple the state space with cardinality S, and then apply a spe-
cific DP method to numerically solve the MOCP. We choose
the Value Iteration (VI) algorithm for its reduced complexity
per iteration, which is especially relevant when the state-grid
has fine resolution. In the algorithm we define the operator
d·e as the closest space point.

Algorithm 1: Value Iteration algorithm

Inputs: number of states S, threshold ε
Convert augmented space X̃ into a grid of S states
Initialize ∆ =∞, k = 0 and V0(x̃s) = 0 for
s = 1 . . . S
while ∆ > ε

for every state s = 1 to S do
x̃s ← the s-th point on the grid
φ(x̃s) = arg maxu Π(x̃s,u) + βVk(df (x̃s,u)e)
Vk+1(x̃s) = Π(x̃s, φ(x̃s)) + βVk(df (x̃s, φ(x̃s)e))
k = k + 1

end for
∆ = maxs |Vk+1(x̃s))− Vk(x̃s))|

end while
Return: Vk+1(x̃s) ∀s

For illustrative purposes, we simulate a simple scenario
with Q = 2 users. A correlated fading scenario is modeled
by means of sinusoids with different frequency and ampli-
tude for each user (see Fig. 1). The maximum transmitted
power is U imax = 5 ∀i, with 20 possible power levels per
user, which amounts to 400 possible actions. The discount
factor is β = 0.9. We discretize the rate into a grid of 30
points per user. The non stationarity of the environment is
surmounted by augmenting the state space with T = 20 time

2 4 6 8 10 12 14 16 18 20
0

1

0.5

Fig. 1. Channel coefficients |hit|2.

steps. Hence, the augmented state space has S = 202 × 20 =
8000 states. We run the VI algorithm over the two schedul-
ing schemes given in (6) and (7). The numerical experiments
illustrate how the control framework can efficiently solve the
complicated dynamical game theoretic formulation. For the
equal-rate problem, the utility function uses α = 0.9.
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Fig. 2. Proportional fair.
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Fig. 3. Equal rate.

The solution of the PF game leads to an efficient solution
(see Fig. 2), in which both users try to minimize interference
and, hence, they approach their maximum rates. In Fig. 3, we
observe that the agents achieve very similar rates. The trend
is that the user with a channel with less average gain (User 2)
tries to achieve its maximum rate, while the user with higher
average gain channel (User 1) reduces its transmitting power
to match the rate of user 2. In other words, the user with
poorest channel sets a bottleneck for the other user.

5. CONCLUSIONS

In this work a general framework for solving a DPG that norm
a decentralizing scheduling algorithm is proposed. Additional
degrees of time-dependability are included, taking into ac-
count both, possible time variations of the utility function and
also non stationarity of the system state function. The pro-
posed scheduling games are shown to turn into an MOCP that
is effectively solved by means of a Value Iteration algorithm.
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