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ABSTRACT

In regression analysis, outliers in the data can induce a bias in the
learned function, resulting in larger errors. In this paper we derive
an empirically estimable bound on the regression error based on a
Euclidean minimum spanning tree generated from the data. Using
this bound as motivation, we propose an iterative approach to re-
move data with noisy responses from the training set. We evaluate
the performance of the algorithm on experiments with real-world
pathological speech (speech from individuals with neurogenic dis-
orders). Comparative results show that removing noisy examples
during training using the proposed approach yields better predictive
performance on out-of- sample data.

Index Terms— robust regression, outlier removal, noisy data,
minimum spanning tree, Friedman-Rafsky statistic

1. INTRODUCTION

Instance pruning is a long-standing problem in the field of machine
learning and has been studied as a means of reducing the complexity
of algorithms and, more recently, filtering noisy labels in data. The
memory and computation requirements of instance-based learning
algorithms, such as the nearest neighbor algorithm [1], are propor-
tional to the number of instances in the training set; as a result,
instance pruning is often a crucial step in their practical implemen-
tation. Recently a number of additional instance pruning approaches
have been developed for the task of learning with imperfect labels in
classification problems. This is a problem of growing importance in
machine learning, due in large part to the advent of crowd-sourcing
labeling methods that make attaining labels from a large number of
“untrusted” annotators relatively inexpensive. There exist a num-
ber of approaches to instance pruning in the classification literature
related to learning from imperfect labels, such as evaluation of an
annotators accuracy without ground truth labels [2, 3], identifying
instances that need relabeling [4, 5].

In this paper we aim to develop a similar method for regression.
Most popular statistics methods operate on the assumption that the
errors are zero-mean, uncorrelated random variables of equal vari-
ance. When these assumptions are violated, in the form of extreme
outliers or leverage points, their performance deteriorates. Some
possible solutions to this problem are: (a) utilize either regression
diagnostics which seek to identify and remove the outliers [6], or (b)
use robust regression procedures, which seek to weights instances
based on the degree to which they adhere to the underlying para-
metric model [7, 8]. While a number of robust approaches have
been proposed for minimizing the affects of outliers, they still rely
on the assumption that the majority of the data adhere to a known
parametric model.

This paper introduces a non-parametric exemplar rejection algo-
rithm using Euclidean minimum spanning trees. In particular, we
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derive a bound on the regression error that can be estimated from
the available training data. Using this bound as a starting point,
we construct an iterative instance removal algorithm that identifies
specific samples with the greatest contribution to this bound. We
use the proposed algorithm in a real-world application where we
objectively evaluate the perceptual attributes of pathological speech
signals. Our approach removes examples with noisy responses dur-
ing training. Hence it results in a higher performance on a regression
task when compared to the two competing alternatives - instance
removal approaches [9, 10] and robust regression by soft weighting
of outlier examples [8, 11].

The rest of this paper is outlined as follows: Section 2 provides
the derivation of an empirically estimable graph-theoretic estima-
tor for the mean squared error of the optimal estimator. Using the
results of Section 2 as motivation, Section 3 introduces an exemplar
rejection algorithm that will incrementally remove instances in order
to approximately minimize the derived MSE estimate. Section 4
demonstrates the performance of the proposed algorithm using syn-
thetic data, and using a real-world example that attempts to model
the severity of individuals with speech disorders using the subjective
evaluations of professional SLPs.

2. THEORY

The primary motivation for this paper is the scenario where the re-
sponses in a regression problem are imperfect. Given a set of data
(xi, yi) for i ∈ [1 . . . n], where each instance xi ∈ Rd is sampled
from the underlying distribution f(x) and each response yi ∈ R1 is
defined as:

yi = θ(xi) + βi (1)

where θ(xi) reflects an oracle function that provides the ground truth
response for each exemplar and βi is zero mean white noise with
variance σ2

i . We assume that both the exemplars and the corre-
sponding responses are independent identically distributed random
variables. In this section we will introduce a graph-theoretic measure
that upper bounds the mean squared error (MSE) of the optimal
estimator of the true response θ(x). Additionally, we will show that
as the number of samples approaches infinity, the proposed function
converges to the MSE. To begin, we define a spanning tree on X
as a connected graph, G = (X, E), with vertex set X, edges E,
edge weights given by Euclidean distances between vertices, and
no cycles. The length L(G) of the spanning tree is the sum of its
edge lengths. The minimal spanning tree (MST), is defined as the
spanning tree with the minimum length. Throughout the rest of this
paper we will use G to refer to the MST of X. If each instance xi
from X is assigned response yi, we can compute the total squared
difference of neighboring responses in the MST,

C(X,y) =
∑
eij∈E

|yi − yj |2. (2)

For every edge in the Euclidean MST of X, this statistic compares
the difference in y values between neighboring nodes in G. It is
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easy to show that this statistic is generalization of the well-known
Friedman-Rafsky test statistic [12]. In fact, if we consider the binary
classification case where y ∈ [0, 1], the statistic in (2) is equivalent
to the Friedman Rafsky test statistic.

Here we show that the expected value of this statistic asymp-
totically converges to the variance of βi. Substitute (1) into (2) we
get:

E
[
C(X,y)

]
= E

 ∑
eij∈E

|θ(xi) + βi − θ(xj)− βj |2


=
∑
eij∈E

E
[
(θ(xi)− θ(xj))2

]
+
∑
eij∈E

E
[
(βi − βj)2

]
+
∑
eij∈E

2E
[
(βi − βj)(θ(xi)− θ(xj))

]
=
∑
eij∈E

E
[
(θ(xi)− θ(xj))2

]
+
∑
eij∈E

(σ2
i + σ2

j )

(3)
The second term in (3) is the sum of the variances for each set of
points connected by an edge in the MST. Without loss of generality,
we can simplify this term by defining the degree of each vertex in
the MST as ρi for i ∈ [1 . . . n]. It is easy to see that this variance
term in (3) can be rewritten as∑

eij∈E

(σ2
i + σ2

j ) =

n∑
i=1

E[ρi]σ
2
i . (4)

This corresponds to weighted sum of the variance of each label. A
number of theoretical and empirical studies suggest that the degree
distribution in random graphs follows a power law, fρ(ρ) ∼ ( 1

ρ
)γ

[13]. This is known to be a relatively low-entropy distribution, where
the variable takes one of only a few values with high probability. As
a result, the weights in the sum would not exhibit great variability,
especially for large values of γ. If we now assume that the noise
is identically distributed (σ2

i = σ2 for i ∈ [1 . . . n]), this weighted
sum simplifies to

n∑
i=1

E[ρi]σ
2
i = σ2

n∑
i=1

E[ρi] (5)

It is known that the sum of the degrees across all nodes in a spanning
tree is equal to two times the number of edges (2||G||), and that the
number of edges is one less than the number of nodes, therefore

σ2
n∑
i=1

E[ρi] = σ2(2||G||) = 2(n− 1)σ2. (6)

Now let us define

Φ(X,y) =
C(X,y)

2(n− 1)
, (7)

with mean

E[Φ(X,y)] =
1

2(n− 1)

∑
eij∈E

E[(θ(xi)− θ(xj))2] (8)

+
1

2(n− 1)

n∑
i=1

E[ρi]σ
2
i .

Under this assumption, it is easy to see that the first term in (8)
will be greater than or equal to zero, therefore Φ upper bounds a

weighted version of the MSE of the ideal estimator. Furthermore, if
θ(x) is a Lipschitz continuous function with Lipschitz constant K,
then ‖θ(xi)−θ(xj)‖2 ≤ K‖xi−xj‖2. Combining this relationship
with the assumption that the noise is identically distributed in (5) and
(6), we can form the following inequality:

E[Φ(X,y)] ≤ K

2(n− 1)

∑
eij∈E

‖xi − xj‖2 + σ2. (9)

This not only bounds the MSE of the ideal estimator, we will go on to
show that when x is drawn from a compactly supported distribution
f(x), it asymptotically converges to the true noise variance, σ2,
since the first term in the inequality goes to 0. If we define the
average euclidean distance of the edges in G as

Γ(G) =
1

n− 1

∑
eij∈E

‖xi − xj‖2, (10)

then the first term in (9) is equal to K
2

Γ(G). This term manages the
tightness of the MSE bound. This quantity has been studied in the
literature. In fact, in [14] Steele showed that, with probability 1,

lim
n→∞

Γ(G) = lim
n→∞

c(d)(n− 1)
−2
d

∫
<
f(x)

d−2
d dx, (11)

where f(x) represents the compactly supported probability density
function of the underlying distribution from which X is sampled,
c(d) denotes a strictly positive constant, and d represents the data
dimension. Note that this expression is only valid when d > 2.

We see from (11) that the bias ofΦ is affected by 1) the Lipschitz
constant; 2) the number of samples; 3) the dimension; 4) the density
of the input distribution. From this relationship it is easy to see that
the bound becomes arbitrarily tight as n → ∞. Furthermore, the
rate of convergence for smaller d, smaller K, and more compact
distributions, f(x), increases.

3. ALGORITHM

The overall goal of this paper is to investigate methods of identi-
fying subsets of data containing noisy responses so that they can be
removed before training the model. A starting point for the algorithm
is the theory outlined in the previous section. Because Φ(X) asymp-
totically converges to the label variance, we propose an algorithm
which seeks to identify the subset of instances Ω that minimizes the
following metric w.r.t. Ω:

Φ(X(Ω),y) =
1

(2|Ω| − 1)

∑
eij∈E

|yi − yj |2 (12)

There are two problems with seeking to minimize this criterion.
First, evaluating this criterion for every potential subset of exemplars
would require construction of 2n−1 minimum spanning trees, which
will be computationally infeasible even for relatively small data sets.
Second, minimizing this criterion without penalizing or restricting
the number of exemplars removed would yield a subset containing
the two instances with the closest y values. We remedy both of these
problems by using a sequential backward selection (SBS) algorithm
which will iteratively remove the ”worst” instances until it reaches
the desired subset size k. By using the SBS algorithm we reduce the
required number of MSTs to

∑N
n=k+1 n = 1

2
(N − k)(N + k+ 1).

For large values of N , this approach may still be computationally
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Algorithm 1 Iterative exemplar removal using minimum spanning
trees

Input: Data Matrix X, Stopping Criteria k
Output: Top N − k exemplars that minimize Φ :

Ω
Define: Ω = 1 . . . N
for j ∈ 1 . . . k do
G(E,X(Ω)) = MST (X(Ω))
for i ∈ G(E,X(Ω)) do

Ψi(X(Ω),y) =
1

ρi

∑
eij∈E

|yi − yj |2

end for
Ω = Ω \ argmax

i
Ψi

end for

prohibitive in many applications. To further reduce the computation-
al burden we introduce an alternate criterion that represents average
squared difference in labels across branches connected to point xi

Ψi(X,y) = Φ(X,y|i) =
1

ρi

∑
eij∈E

|yi − yj |2 (13)

In short, this function estimates the average difference between y
values for all points connected to xi in the MST. As such, it estimates
the contribution of instance xi to Φ(X(Ω)). While this is a heuristic
simplification of the optimal criterion in (12), empirical simulations
found that the new, simplified criterion performs well on a number of
experiments (see Section 4). By using the Ψ criterion, the algorithm
now requires the construction of k MSTs.

4. RESULTS

This Section is broken into two parts. Section 4.1 introduces an aca-
demic example where synthetic data are corrupted by various levels
of noise and the proposed algorithm is used to remove the noisy
instances. Section 4.2 attempts to apply the proposed algorithm in
real data to identify and remove instances that do not fit with their
subjective evaluation.

4.1. Academic Simulation

To test the effectiveness of the proposed algorithm we examine the
scenario where y can be expressed as a linear combination of x plus
additive gaussian white noise (AGWN) β ∼ N(0, σ2).

yi =
M∑
j=1

α(j)xi(j) + βi = ỹi + βi (14)

where M represents the number of features and xi(j) represents the
value of feature j for instance i. For our simulation, we make X a
25-dimensional matrix containing 2000 exemplars that are normally
distributed with zero mean and unit variance. We set all α coeffi-
cients equal to one while β may take on one of 5 different noise
levels with equal probability.

Once the dataset is generated, we use Alg. 1 to iteratively re-
move exemplars from the dataset. After each exemplar is removed,
we use the reduced dataset to train a linear model. We evaluate
the performance of each model based on its mean squared error
(MSE) in predicting the true labels ỹi. The resulting MSE values are
displayed in Figure 2. It is clear from this figure that removing the
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Fig. 1. Number of instances, among the first 400 removed by the
proposed algorithm, corresponding to each noise level
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Fig. 2. MSE as a function of the number of exemplars removed.

high-noise values results in a smaller MSE. In fact, there is an initial
dramatic drop in the the MSE (resulting from removing the highest-
noise exemplars), followed by a more gradual decline. To verify
that the algorithm is correctly identifying the exemplars generated
from the higher σ2 values we also plot the histogram displaying how
many of the first 400 exemplars removed are drawn from each noise
level in Figure 1. This Figure shows that while the algorithm does
select instances for rejection from every noise level, the majority of
exemplars that are removed are drawn from the higher noise levels.

4.2. Disordered Speech Example

The target application for the work in this paper is the objective
evaluation of the perceptual attributes of pathological speech. While
there exist a number of different perceptual attributes to investigate,
we use severity as a test case for the analysis presented in this paper.

4.2.1. Data

We make use of data collected in the Motor Speech Disorders Lab-
oratory at Arizona State University, consisting of 34 dysarthric s-
peakers and 13 healthy speakers. The dysarthria speakers included:
12 speakers with ataxic dysarthria, secondary to cerebellar degener-
ation, 10 mixed flaccid-spastic dysarthria, secondary to amyotrophic
lateral sclerosis, 8 speakers with hypokinetic dysarthria secondary
to Parkinson’s Disease, and 4 speakers with hyperkinetic dysarthri-
a secondary to Huntington’s disease (HD). Each patient provided
speech samples, including a reading passage, phrases, and sentences.
The speech database consists of approximately 10 minutes of record-
ed material per speaker. In addition to identifying each speaker based
on their specific neurogenic disorder, the database provides subjec-
tive evaluations for each speaker from 6 different speech-language
pathologists. The 6 SLPs were blinded to the speakers dysarthria
subtype, and were asked to mark each speaker along 5 differen-
t perceptual attributes (severity, nasality,vocal quality, articulatory
precision, prosody) on a scale ranging from normal to severely ab-
normal. A number of candidate feature sets have been developed
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Fig. 3. Block diagram of experimental design.

in the literature for analysis of pathological speech [15–20]. In this
paper, we restrict our analysis to the long-term average spectrum
(LTAS) [21], Envelope Modulation Spectrum [22], and P.563 [23].
This results in a total of 4180 instances each represented by 123
features. A detailed description of each feature set can be found in
[17]. These speech samples were taken from the larger pathological
speech databased described in [24].

4.2.2. Experimental Setup

A graphical depiction of the experimental setup is provided in Figure
3. Beginning with the feature 4180x123 feature matrix described in
4.2.1, we partition the data for cross-validation by removing a single
speaker from the training set and placing them in the test set. We then
employ Principal Feature Analysis algorithm [25] with the correla-
tion matrix to identify the top 50 features with minimal redundancy.
We then apply Principal Components Analysis to further reduce the
dimensionality. The instance rejection procedure described in Alg. 1
is applied to the resulting dataset to iteratively identify and remove
noisy instances. We set K = 1000 and select 5 points per MST for
removal, and monitor the performance of the algorithm as a function
of the number of exemplars removed. After removing the noisy
instances we use PCA to form a low-dimensional representation.
Finally we use the modified dataset, which now contains N − k
exemplars expressed in 10 dimensions, to train a linear model using
robust least squares with Huber loss. The severity ratings of a single
SLP are used as the response variable. The resulting model is then
used to predict responses for each of the instances that were parti-
tioned into the test dataset. This yields a set of responses pertaining
to a single speaker that we then average to achieve an estimate of the
severity rating for that speaker. This process is then repeated until
we have generated severity ratings for all 33 speakers and 6 SLPs in
the data set.

In addition to the exemplar selection method proposed in this
paper, we also tested 3 alternate selection methods for selecting ex-
amples: (a) k-means clustering, (b) support vector regression, and (c)
speaker based exemplar removal. In k-means exemplar selection we
identify 250 clusters using the k-means algorithms, then iteratively
remove points with the largest distance from their respective cluster
mean. Next we a construct a support vector machine (SVM), and
remove all instances not chosen as support vectors. We control the
number of support vectors by varying the C parameter from 0.025
to 10 on a logarithmic scale while ε is held constant at 0.25. Finally
we employ a speaker based pruning method where we look at the
data from each individual speaker and remove iteratively remove the
instances with the largest standardized euclidean distance from the
mean.

4.2.3. Evaluation

Because severity is inherently subjective and no ground truth scores
exist, we use the average severity rating of the 5 SLPs not used in
training to approximate the true severity rating. We evaluate the
performance of each model by correlating the predicted ratings with
the average rating of the 5 SLPs not used to train the model. These
correlation values are then averaged across the 6 different SLP CV
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Fig. 4. Average correlation between model predictions and the
average subjective rating as a function of the number of exemplars
removed. Mean correlation of individual SLPs with the average
score is 0.9332)

stages and the resulting average correlation scores are displayed as
a function of the number of exemplars removed in Figure 4. Figure
4 shows that of the four exemplar pruning methods that were test-
ed, the proposed MST-based pruning approach is the only one that
achieved a noticeable improvement in correlation when averaged
across the six SLPs. The proposed method yields an improvement of
∼ 0.015 in the average correlation score which plateaus at around
150 instances and begins to decline after ∼ 500 exemplars have
been removed. This decline marks the point at which the benefit of
reducing the noise in the dataset no longer outweighs the information
lost in reducing the overall size of the dataset.

5. CONCLUSION

In real world regression problems, classical regression algorithms
must be employed cautiously due to the strict assumptions under
which they successfully operate. In this paper we discuss a new
method for bounding the minimal error in regression problems us-
ing a graph-theoretic approach. Furthermore, this bound is non-
parametric and can be empirically estimated given only samples and
corresponding responses. Motivated by this bound, we present an
iterative algorithm for data removal. The algorithm aims to minimize
the new bound by selecting points with the greatest contribution
to the bound. We evaluate the algorithm on a pathological speech
assessment task, where we aim to learn a model that predicts expert
scores of different atypical speech samples. Results show that, by
removing the noisy points, we obtain higher quality models that
better correlate with expert perception.
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