
TWICE-UNIVERSAL PIECEWISE LINEAR REGRESSION VIA INFINITE DEPTH
CONTEXT TREES

N. Denizcan Vanli∗, Muhammed O. Sayin∗, Tolga Göze†, and Suleyman S. Kozat∗

∗ Department of Electrical and Electronics Engineering
Bilkent University, Bilkent, Ankara 06800, Turkey

E-mail: {vanli, sayin, kozat}@ee.bilkent.edu.tr.

† Alcatel-Lucent, Istanbul, Turkey
Email: tolga.goze@alcatel-lucent.com

ABSTRACT

We investigate the problem of sequential piecewise linear regression
from a competitive framework. For an arbitrary and unknown data
length n, we first introduce a method to partition the regressor space.
Particularly, we present a recursive method that divides the regres-
sor space into O(n) disjoint regions that can result in approximately
1.5n different piecewise linear models on the regressor space. For
each region, we introduce a universal linear regressor whose perfor-
mance is nearly as well as the best linear regressor whose parame-
ters are set non-causally. We then use an infinite depth context tree
to represent all piecewise linear models and introduce a universal
algorithm to achieve the performance of the best piecewise linear
model that can be selected in hindsight. In this sense, the introduced
algorithm is twice-universal such that it sequentially achieves the
performance of the best model that uses the optimal regression pa-
rameters. Our algorithm achieves this performance only with a com-
putational complexity upper bounded byO(n) in the worst-case and
O(log(n)) under certain regularity conditions. We provide the ex-
plicit description of the algorithm as well as the upper bounds on the
regret with respect to the best nonlinear and piecewise linear models,
and demonstrate the performance of the algorithm through simula-
tions.

Index Terms— Sequential, nonlinear, piecewise linear, regres-
sion, infinite depth context tree.

1. INTRODUCTION

Nonlinear regression methods based on piecewise linear and locally
linear approximations are extensively studied in order to capture the
salient characteristics of a signal, where linear modeling yields un-
satisfactory results [1–8]. Although nonlinear models are more pow-
erful than the linear ones, their usage is generally limited due to the
overfitting and convergence problems [1–3,5,7]. Therefore, in order
to obtain a satisfactory performance while mitigating these issues,
usually, tree based piecewise linear regressors are introduced instead
of linear models [6–8].

In this paper, we consider the problem of sequential regression,
where the aim is to estimate an unknown desired sequence {d[t]}t≥1

by using a sequence of regressor vectors {x[t]}t≥1. We refrain from
any statistical assumptions on the unknown desired signal {d[t]}t≥1

and the regressor vectors {x[t]}t≥1, where the desired sequence and
the regressor vectors are real valued and bounded, i.e., d[t] ∈ R,
x[t] , [x1[t], . . . , xp[t]]

T ∈ Rp for an arbitrary integer p and
|d[t]|, |xi[t]| < A < ∞ for all t and i = 1, . . . , p. We call the
regressors as “sequential” if in order to estimate the desired data at
time t, i.e., d[t], they only use the past information d[1], . . . , d[t−1]

and the observed regressor vectors, x[1], . . . ,x[t]. That is, say we
have1 a sequential regressor d̂[t] = f(x[t]), then the regressor func-
tion f(·) can be constructed using only dt−1

1 and xt1.
A simple and widely used regressor function is the linear regres-

sor f(x[t]) = wT
t xt, where the weighting parameter wt is updated

at each time t according to an update rule, e.g., the recursive least
squares (RLS) algorithm [9]. However, since the performance of a
linear regressor may be unsatisfactory in many cases [1–8], instead
of committing to a linear model, we partition the regressor space into
disjoint regions and fit a separate linear model in each region. Fur-
thermore, in order to efficiently manage the partitions defined on the
regressor space, we use “context trees” [10, 11].

Although partitioning the regressor space to introduce nonlin-
earity and using a tree structure to manage these partitions can be
an efficient modeling method, the performance of the regressor is
heavily affected by the construction of the tree [6–8]. Particularly,
the “accurate” partitioning of the regressor space mainly defines the
performance of the regressor. As an example, selection of the depth
of the tree (i.e., the number of partitions) and the region boundaries
of these partitions mainly define the performance of the regressor.
While arbitrarily increasing the depth of the tree improves the mod-
eling power of a regressor, such an increase usually results in overfit-
ting [6]. Furthermore, although there exist methods that rely on held
out data for such decisions, these methods usually do not have the
theoretical justification or hard to implement in a sequential man-
ner [7].

To overcome these issues, we do not directly commit to a fixed
depth (and fixed power) tree, but introduce a method to construct a
context tree [11], whose depth is adaptively incremented according
to the unknown data length n. In this sense, the depth of the context
tree goes to infinity as n, the data length, increases, hence we call
such a tree as the “infinite depth context tree” [11]. Clearly, by defin-
ing such a partitioning method, we increase the number of disjoint
regions on the regressor space as n increases. Therefore, the non-
linear modeling power of the regressor will increase sequentially as
n increases, where the computational complexity of the introduced
algorithm, in the worst-case scenario, is linear in the data length n,
i.e., O(n).

Hence, the main contributions of this paper are as follows. We
introduce a sequential piecewise linear regression algorithm i) that
provides a significantly improved modeling power by adaptively in-
creasing the depth of the tree according to the arbitrary and unknown
data length n, ii) that is highly efficient in terms of the computa-
tional complexity as well as the error performance, and iii) whose

1All vectors are column vectors and denoted by boldface lower case let-
ters. Matrices are denoted by boldface upper case letters. For a vector x, xT

is the ordinary transpose. We denote dba , {d[t]}bt=a.

2051978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

R
1

R
2

R
3

R
4
 R

3

4

R
1

2

 R
1

2

R
3

4

A

-A

Fig. 1. The partitioning of a one dimensional regressor space, i.e.,
[−A,A], using a depth-2 full context tree.

performance converges to the best piecewise linear model defined on
the infinite depth context tree, with guaranteed upper bounds with-
out any statistical assumptions on the desired data. Hence, unlike
the state of the art approaches whose performances usually depend
on the initial construction of the tree, the introduced algorithm in-
creases its nonlinear modeling power as the data length n increases,
which results in a significantly superior performance. Furthermore,
our algorithm achieves this performance only with a computational
complexity O(log(n)) under certain regularity conditions.

2. PROBLEM DESCRIPTION

In the aforementioned framework, a piecewise linear model is con-
structed by dividing the regressor space into a union of disjoint re-
gions, where in each region a linear model holds. As an example,
suppose that the regressor space is parsed into K disjoint regions
R1, . . . ,RK such that

⋃K
k=1Rk = [−A,A]p. Given such a model,

say modelm, at each time t, the sequential linear2 regressor predicts
d[t] as d̂m[t] = vTm,k[t]x[t] when x[t] ∈ Rk, where vm,k[t] ∈ Rp
for all k = 1, . . . ,K.

However, by directly partitioning the regressor space as
⋃K
k=1

Rk = [−A,A]p before the processing starts and optimizing only the
weighting parameters of the piecewise linear model, i.e., vm,k[t],
one significantly limits the performance of the regressor since we
do not have any prior knowledge on the underlying desired signal.
Therefore, instead of committing to a single piecewise linear model
and performing optimization only over the regression parameters of
this regressor, one can use a context tree to partition the regressor
space, by which seeking to achieve the performance of the best parti-
tioning over the whole doubly exponential number of different mod-
els represented by the context tree [12].

As an example, in Fig. 1, we partition the one dimensional re-
gressor space using a depth-2 tree, where the regions R1, . . . ,R4

correspond to the respective intervals on the real line and the inter-
nal nodes are constructed using these regions. In the generic case,
for a depth-d full context tree, there exist 2d leaf nodes and 2d − 1
internal nodes. Each node of the tree represents a portion of the re-
gressor space such that the union of the regions represented by the
leaf nodes is equal to the entire regressor space [−A,A]p. More-
over, the region corresponding to each internal node is constructed
by the union of the regions of its children. In this sense, we obtain
2d+1− 1 different regions on the regressor space and approximately
1.52

d

different models that can be represented by depth-d tree [12].
We denote the set of all different piecewise linear models defined

2Note that affine models can also be represented as linear models by ap-
pending a 1 to x[t], where the dimension of the regressor space increases by
one.

P
3
 P

2
 P

1
 P

4
 P

5

Fig. 2. All different piecewise linear models that can be obtained
using a depth-2 full context tree, where the regressor space is one
dimensional. These models are based on the partitioning shown in
Fig. 1.

on a depth-d context tree asMd. As an example, we consider the
same scenario as in Fig. 1, where we partition the one dimensional
real space using a depth-2 context tree. Then, as shown in Fig. 2,
a depth-2 tree defines |Md| = 5 different piecewise linear models,
where each of these models is constructed using the nodes of the full
depth context tree.

We emphasize that given a context tree of depth-d, the nonlin-
ear modeling power of this tree is fixed and finite since there are
only 2d+1 − 1 different regions and approximately 1.52

d

different
nonlinear models defined on this tree. Instead of introducing such
a limitation, we recursively increment the depth of the context tree
as the data length increases. As previously mentioned, we call such
a tree the “infinite depth context tree” [11], since the depth of the
context tree goes to infinity as the data length n increases, hence in a
certain sense, we can achieve an infinite nonlinear modeling power.
That is, as n increases, the piecewise nonlinear models defined on
the tree will converge to any unknown underlying nonlinear model
under certain regularity conditions.

To this end, we try to minimize the following regret

n∑
t=1

(
d[t]− d̂s[t]

)2
− inf
m∈M

 inf
vm,k∈Rp
k=1,...,K

n∑
t=1

(
d[t]− d̂b[t]

)2 ,

(1)
for any n, where M denotes the set of all different piecewise lin-
ear models defined on the infinite depth context tree, vm,k is the
regression parameter of the kth partition of the mth piecewise linear
model such that d̂b[t] = vTm,kx[t] is the prediction of a batch re-
gressor (when x[t] ∈ Rk), whose parameters can be set in hindsight
after observing the entire data before processing starts. The term in
(1) represents the difference in the performance of our algorithm and
the optimal batch piecewise linear regressor embedded with the op-
timal regression parameters in hindsight. Therefore, an upper bound
on (1) shows the convergence performance of the introduced algo-
rithm.

3. NONLINEAR REGRESSION VIA INFINITE DEPTH
CONTEXT TREES

In this section, we introduce a sequential piecewise linear regression
algorithm that asymptotically achieves the performance of the best
piecewise linear model defined on the infinite depth context tree and
embedded with the optimum regression parameters. We provide the
algorithmic details in the proof of Theorem 1.

Theorem 1: Let {d[t]}t≥1 and {x[t]}t≥1 be arbitrary, bounded,
and real-valued sequences of data and regressor vectors, respec-
tively. Then the algorithm d̂[t] given in Section 3.1 when applied to

2052

these data sequences yields

n∑
t=1

(
d[t]− d̂[t]

)2
− inf
m∈M′

[
inf

vm,k∈Rp
k=1,...,Km

{
n∑
t=1

(
d[t]− d̂b[t]

)2

+ δ ||vm||2
}]
≤ O

(
p log2(n)

)
,

for any n, with a computational complexity upper bounded by
O(n), where M′ , {m ∈ M : Km ≤ O(log(n))}, vm ,
[vm,1; . . . ;vm,Km], and Km represents the number of disjoint
regions in model m.

This theorem implies that our algorithm given in Section 3.1,
asymptotically achieves the performance of the best piecewise lin-
ear model (having O(log(n)) partitions), whose regression parame-
ters are optimally set in hindsight, defined on the infinite depth con-
text tree. Note that the number of different piecewise linear mod-
els defined on the infinite depth context tree can be in the order of
1.5n [12]. This result indicates that as n increases, the performance
of the introduced algorithm sequentially converges to the perfor-
mance of more powerful piecewise linear regressors. Hence, as n
increases, the difference in the performances of the introduced algo-
rithm and the piecewise linear model that optimally partitions the re-
gressor space will decrease. Such a powerful regression technique is
achieved with a computational complexity upper bounded by O(n),
i.e., only linear in the data length.

3.1. Outline of the Proof of Theorem 1 and Construction of the
Algorithm

In order to prove Theorem 1, we first consider the parameter regret
that results while learning the true regression parameters for a given
piecewise linear model. We then introduce a method to partition
the regressor space so that we obtain an infinite depth context tree.
Finally, we consider the structural regret that results while learning
the true partitioning of the regressor space for the introduced infinite
depth context tree.

For the first part of the proof, consider that a piecewise linear
model, say themth model, havingKm disjoint regionsR1, . . . ,RKm
such that

⋃Km
k=1Rk = [−A,A]p is given. Then, a piecewise linear

regressor can be constructed using the universal linear predictor
of [13] in each region as d̂m[t] = vTm,k[t]x[t], when x[t] ∈ Rk,
with the corresponding regression parameters [13]. The upper bound
on the performance of this regressor can be calculated following
similar lines to [13] and it is obtained as follows

n∑
t=1

(
d[t]− d̂m[t]

)2
−min
vm,k∈Rp
k=1,...,Km

{
n∑
t=1

(
d[t]− d̂b[t]

)2
+ δ ||vm||2

}

≤ A2Kmp ln (n/Km) +O(1). (2)

This concludes the first part of the proof.
Before we introduce the partitioning method to generate the in-

finite depth context tree, we first introduce a labeling for the tree
nodes following [10]. The root node is labeled with an empty binary
string λ and assuming that a node has a label κ, where κ = ν1 . . . νl
is a binary string of length l formed from letters ν1, . . . , νl, we la-
bel its upper and lower children as κ1 and κ0, respectively. Here,
we emphasize that a string can only take its letters from the binary
alphabet, i.e., ν ∈ {0, 1}, where 0 refers to the lower child, and 1
refers to the upper child of a node. We also introduce another con-
cept, i.e., the definition of the prefix of a string. We say that a string

A

-A

A

-A

A

-A

A

-A

A

-A

A

-A

A

-A

t=0 t=1 t=2 t=3

t=4 t=5 t=6

Fig. 3. A sample evolution of the infinite depth context tree, where
the regressor space is one dimensional. The “×” marks on the re-
gressor space represents the value of the regressor vector at that spe-
cific time instant. Light nodes are the ones having an index of 1,
whereas the index of the dark nodes is 0.

κ′ = ν′1 . . . ν
′
l′ is a prefix to string κ = ν1 . . . νl if l′ ≤ l and

ν′i = νi for all i = 1, . . . , l′, and the empty string λ is a prefix to
all strings. Finally, we let P(κ) represent all prefixes to the string
κ, i.e., P(κ) , {κ0, . . . , κl}, where l , l(κ) is the length of the
string κ, κi is the string with l(κi) = i, and κ0 = λ is the empty
string, such that the first i letters of the string κ forms the string κi
for i = 0, . . . , l.

LettingL denote the set of leaf nodes for a given context tree, we
consider each leaf node of the tree κ ∈ L, and define a specific index
ακ ∈ {0, 1} for these leaf nodes such that ακ represents whether a
regressor vector has fallen into Rκ. That is, ακ = 0 represents
that no regressor vector has fallen into region Rκ, whereas ακ = 1
means that there was one. We also store the set of regressor vectors
at each leaf node, which we denote by xκ,n , {x[t], ∀t ∈ {1, n} :
x[t] ∈ Rκ}.

We then present the algorithm to construct the infinite depth con-
text tree as follows. At time t = 0, we begin with a single node, i.e.,
the root node λ, having index αλ = 0. Then, we recursively con-
struct the context tree according to the following principle. For every
time instant t > 0, we find the leaf node of the tree κ ∈ L such that
x[t] ∈ Rκ. For this node if we have

• ακ = 1, then we generate two children nodes κ0, κ1 for
this node by dividing the regionRκ into two disjoint regions
Rκ0,Rκ1 using the plane xi = c, where i − 1 ≡ l(κ)
(mod p) and c is the midpoint of the region Rκ along the
ith dimension. Then, we divide the information stored in
xκ,n into xκ0,n,xκ1,n and assign these sets to the nodes
κ0, κ1, respectively. Using this information, we calculate
vm,κ0[t],vm,κ1[t] and finally set ακν = 1 for the node κν,
where ν ∈ {0, 1}, such that x[t] ∈ Rκν , and set ακνc = 0,
where νc represents the complementary letter of ν in the bi-
nary alphabet {0, 1}.

• ακ = 0, then we only increment this number by 1 and per-
form the algorithmic updates without any modification on the
context tree.

2053

As an example, in Fig. 3, we consider that the regressor space
is one dimensional and present a sample evolution of the tree, where
in the figure, the nodes having an index of 0 are shown as dark
nodes, whereas the others are light nodes, and the regressor vectors
are marked with ×’s in the one dimensional regressor space. For
instance at time t = 2, we have a depth-1 context tree, where we
have two nodes 0 and 1 with corresponding regions R0 = [−A, 0],
R1 = [0, A], and α0 = 1, α1 = 0. Then, at time t = 3, we ob-
serve a regressor vector x[3] ∈ R0 and divide this region into two
disjoint regions using x1 = −A/2 line. We then find that in fact
x[3] ∈ R01, hence set α01 = 1, whereas α00 = 0. This concludes
the second part of the proof, i.e., the construction of the infinite depth
context tree.

In the final part of the proof, we consider the structural regret of
our algorithm. We first assign a weight based on the performance
[10] for each leaf node κ ∈ L as follows

Pκ(n) , exp

− 1

2a

∑
t≤n :x[t]∈Rκ

(
d[t]− d̂m,k[t]

)2 ,

where d̂m,k[t] is constructed using the regressor introduced in [13]
and discussed in the first part of the proof. Then, we define the
probability of an inner node κ /∈ L as follows

Pκ(n) ,
1

2
Pκ0(n)Pκ1(n)

+
1

2
exp

− 1

2a

∑
t≤n :x[t]∈Rκ

(
d[t]− d̂m,k[t]

)2 .

After some algebra [10, 11], it can be shown that

−2a ln (Pλ(n)) ≤ min
m∈M

{
n∑
t=1

(
d[t]− d̂m[t]

)2}
+ 2a ln(2) log(n) + 4A2Km log(n), (3)

where the first term follows due to the mixture-of-experts approach
and the second term follows due to the adaptive construction of the
infinite depth context tree. Using these node weights, we can con-
struct a sequential algorithm [6], hence this concludes the proof of
the theorem. �

Remark 1: By limiting the maximum depth of the tree by
O(log(t)) at each time t, we can achieve a low complexity imple-
mentation. With this limitation and according to the update rule of
the tree, we can observe that while dividing a region into two disjoint
regions, we may be forced to perform O(n) computations due to the
accumulated regressor vectors. However, since a regressor vector
is processed by at most O(log(n)) nodes for any n, the average
computational complexity of the update rule of the tree remains
O(log(n)). Furthermore, the performance of this low complexity
implementation will be asymptotically the same as the exact imple-
mentation provided that the regressor vectors are evenly distributed
in the regressor space. This result follows when we multiply the
tree construction regret in (3) by the total number of accumulated
regressor vectors, whose order, according to the above condition, is
upper bounded by o(n/ log(n)).

4. SIMULATIONS
In this section, we illustrate the performance of the introduced algo-
rithm for the chaotic signal generated from the Duffing map. The
Duffing map is generated by the following discrete time equation

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data Length (n)

N
or

m
al

iz
ed

 A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or

Normalized Accumulated Squared Error Performance of the Proposed Algorithms

VSR

MARSIDT

LR CTW

Fig. 4. Normalized cumulative squared error performances for the
chaotic data generated by the Duffing map.

x[t + 1] = ax[t] − (x[t])3 − bx[t − 1], where we set a = 2.75
and b = 0.2 to produce the chaotic behavior. We denote the infi-
nite depth context tree algorithm of Theorem 1 by “IDT”, the con-
text tree weighting algorithm of [6] by “CTW”, the linear regressor
by “LR”, the Volterra series regressor by “VSR” [14], and the slid-
ing window Multivariate Adaptive Regression Splines of [15,16] by
“MARS”.The combination weights of the LR and VSR are updated
using the recursive least squares (RLS) algorithm [9]. The CTW
algorithm has depth 2, the VSR and MARS algorithms are second
order, and the MARS algorithm uses 21 knots with a window length
of 500 that shifts in every 200 samples.

Fig. 4 shows the normalized cumulative squared error perfor-
mances of the proposed algorithms. Since the conventional non-
linear and piecewise linear regression algorithms commit to a pri-
ori partitioning and/or basis functions, their performances are lim-
ited by the performances of the optimal batch regressors using these
prior partitioning and/or basis functions as can be observed in Fig. 4.
Hence, such prior selections result in fundamental performance lim-
itations for these algorithms. For example, in the CTW algorithm,
the partitioning of the regressor space is set before the processing
starts. If this partitioning does not match with the underlying par-
titioning of the regressor space, then the performance of the CTW
algorithm becomes highly unsatisfactory as seen in Fig. 4. Unlike
such nonlinear models, the introduced algorithm does not commit
to any prior structure and basis functions, instead it increments the
number of disjoint regions to increase its nonlinear modeling power
as the observed data length increases.

5. CONCLUDING REMARKS

We study nonlinear regression of deterministic signals using an infi-
nite depth context tree, where the regressor space is partitioned using
a nested structure and independent regressors are assigned to each
region. In this framework, we introduce a tree based algorithm that
sequentially increases its nonlinear modeling power and achieves the
performance of the best piecewise linear model defined on the infi-
nite depth context tree. Furthermore, this performance is achieved
only with a computational complexity O(log(n)) under certain reg-
ularity conditions. We demonstrate performance gains of the intro-
duced algorithm over a prediction scenario of a chaotic signal.

2054

6. REFERENCES

[1] L. Devroye, T. Linder, and G. Lugosi, “Nonparametric estima-
tion and classification using radial basis function nets and em-
pirical risk minimization,” IEEE Transactions on Neural Net-
works, vol. 7, no. 2, pp. 475–487, Mar 1996.

[2] A. Krzyzak and T. Linder, “Radial basis function networks and
complexity regularization in function learning,” IEEE Trans-
actions on Neural Networks, vol. 9, no. 2, pp. 247–256, Mar
1998.

[3] I. Ali and Y.-T. Chen, “Design quality and robustness with neu-
ral networks,” IEEE Transactions on Neural Networks, vol. 10,
no. 6, pp. 1518–1527, Nov 1999.

[4] R. Gribonval, “From projection pursuit and CART to adap-
tive discriminant analysis?” IEEE Transactions on Neural Net-
works, vol. 16, no. 3, pp. 522–532, May 2005.

[5] A. C. Singer, G. W. Wornell, and A. V. Oppenheim, “Nonlin-
ear autoregressive modeling and estimation in the presence of
noise,” Digital Signal Processing, vol. 4, no. 4, pp. 207–221,
1994.

[6] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piece-
wise linear prediction via context trees,” IEEE Transactions on
Signal Processing, vol. 55, no. 7, pp. 3730–3745, 2007.

[7] S. Dasgupta and Y. Freund, “Random projection trees for vec-
tor quantization,” IEEE Transactions on Information Theory,
vol. 55, no. 7, pp. 3229–3242, 2009.

[8] Y. Yilmaz and S. S. Kozat, “Competitive randomized nonlin-
ear prediction under additive noise,” IEEE Signal Processing
Letters, vol. 17, no. 4, pp. 335–339, April 2010.

[9] A. H. Sayed, Fundamentals of Adaptive Filtering. NJ: John
Wiley & Sons, 2003.

[10] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The
context-tree weighting method: basic properties,” IEEE Trans-
actions on Information Theory, vol. 41, no. 3, pp. 653–664,
1995.

[11] F. M. J. Willems, “The context-tree weighting method: ex-
tensions,” IEEE Transactions on Information Theory, vol. 44,
no. 2, pp. 792–798, Mar 1998.

[12] A. V. Aho and N. J. A. Sloane, “Some doubly exponential se-
quences,” Fibonacci Quarterly, vol. 11, pp. 429–437, 1970.

[13] A. C. Singer, S. S. Kozat, and M. Feder, “Universal linear least
squares prediction: upper and lower bounds,” IEEE Transac-
tions on Information Theory, vol. 48, no. 8, pp. 2354–2362,
2002.

[14] M. Schetzen, The Volterra and Wiener Theories of Nonlinear
Systems. NJ: John Wiley & Sons, 1980.

[15] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[16] ——, “Fast MARS,” Stanford Univer-
sity Technical Report, 1993. [Online]. Avail-
able: http://www.milbo.users.sonic.net/earth/Friedman-
FastMars.pdf

2055

