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ABSTRACT

Theoretical validity of empirical error minimization in multi-
ple kernel regressors is discussed in this paper. Generalization
error of a kernel machine is usually evaluated by the induced
norm of the difference between an unknown true function and
an estimated one in an appropriate reproducing kernel Hilbert
space. It is well known that empirical error minimization also
achieves the minimum generalization error in single kernel re-
gressors. However, it is not clarified whether or not that is true
for multiple kernel regressors. Moreover, possibility of con-
structing the minimizer of the generalization error by a given
training date set is not also clarified. In this paper, we give
negative conclusions for these problems through theoretical
analyses on the generalization error of multiple kernel regres-
sors and also give an example by popular Gaussian kernels.

Index Terms— multiple kernel regressor, reproducing
kernel Hilbert space, generalization error, empirical error
minimization

1. INTRODUCTION

Learning based on kernel machines [1, 2, 3, 4] is widely
known as a powerful tool for various fields of information
science such as pattern recognition, regression estimation,
and density estimation. For the last few decades, kernel ma-
chines with multiple kernels attract much attention in these
fields and various learning methods have been developed
(see [5] and its references for instance). In this work, we
concentrate on a kernel-based regression problem due to its
simple structure for analyses. The aim of the regression prob-
lem is to minimize the generalization error, that is, the error
for arbitrary input vectors. However, many kernel regres-
sors are formalized as minimization of empirical error, that
is, the error for training data set, with some constraints or
regularization terms. In kernel regressors with a single ker-
nel, it is clarified that the empirical error minimization also
achieves the minimum generalization error which is evaluated
by the induced norm of the difference between an unknown
true function and an estimated one in the reproducing kernel
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Hilbert space corresponding to the adopted kernel (see [6, 7]
for instance), On the other hand, it is not clarified whether
or not that is true for multiple kernel regressors. Moreover,
possibility of constructing the minimizer of the generaliza-
tion error by a given training data set is not also clarified. In
this paper, we discuss theoretical properties of the optimal
learning result of the multiple kernel regressor and show that
(a) the empirical error minimization can not always minimize
the generalization error; and (b) the optimal learning result,
in terms of minimum generalization error, can not always
obtained from a given training data set. We also show an
example with popular Gaussian kernels with various shape
parameters in order to confirm our theoretical results.

2. MATHEMATICAL PRELIMINARIES FOR THE
THEORY OF REPRODUCING KERNEL HILBERT

SPACES

In this section, we prepare some mathematical tools con-
cerned with the theory of reproducing kernel Hilbert spaces
[8, 9].

Definition 1 [8] Let Rn be an n-dimensional real vector
space and let H be a class of functions defined on D ⊂ Rn,
forming a Hilbert space of real-valued functions. The func-
tion K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of
H, if

1. ∀x̃ ∈ D; K(·, x̃) ∈ H,

2. ∀x̃ ∈ D, ∀f(·) ∈ H; f(x̃) = 〈f(·),K(·, x̃)〉H,

where 〈·, ·〉H denotes the inner product of H.

The Hilbert space that has a reproducing kernel K is
called a reproducing kernel Hilbert space (RKHS), denoted
by HK . The reproducing property (the second condition in
Definition 1) enables us to treat a value of a function at a point
in D, while we can not deal with a value of a function in a
general Hilbert space such as L2 (the Hilbert space consisting
of all square-integrable functions). Note that reproducing
kernels are positive definite [8]:

N∑
i,j=1

cicjK(xi, xj) ≥ 0, (1)
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for any N ∈ N, c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In
addition, K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D is followed
[8]. If a reproducing kernel K(x, x̃) exists, it is unique [8].
Conversely, every positive definite function K(x, x̃) has the
unique corresponding RKHS [8]. We assume that an RKHS
is separable [10] in this paper.

3. PROBLEM FORMULATION AND OVERVIEW OF
SINGLE KERNEL REGRESSOR

Let {(yi,xi) | i ∈ {1, . . . , `}} be a given training data set
with an output value yi ∈ R and the corresponding input
vector xi ∈ Rn, satisfying

yi = f(xi) + ni, (2)

where f(·) denotes an unknown true function and ni denotes
an additive noise. The aim of regression problem is to esti-
mate the unknown true function f(·) by using the given train-
ing data set and statistical properties of the noise (if available).
Note that we ignore the additive noise in the following con-
tents since analyses on the additive noise are out of the scope
of this paper.

In the single kernel regressor using a kernel K, a learning
result is modeled as a linear combination of K(·, xi), (i ∈
{1, . . . , `}) written as

f̂(·) =
∑̀
i=1

ciK(·,xi) (3)

with some coefficients ci ∈ R, (i ∈ {1, . . . , `}). In general,
these coefficients are obtained by minimization of the empir-
ical error defined by

J
(emp)
1 =

∑̀
j=1

(
yj −

∑̀
i=1

ciK(xj , xi)

)2

, (4)

which can be also represented by

J
(emp)
1 = ||y − G

(K)
X c||2, (5)

where y = [f(x1), . . . , f(x`)]′ (since we ignore the noise),
c = [c1, . . . , c`]′ with the superscript ′ denoting the trans-
position operator and G

(K)
X = (K(xi,xj)) with X =

{x1, . . . ,x`}. It is trivial that a typical1 solution that mini-
mizes Eq.(5) is given as

ĉ
(emp)
1 = (G(K)

X )+y, (6)

where the superscript + denotes the Moore-Penrose general-
ized inverse [11]. Note that it is not so trivial that the learning
result by Eq.(6) gives a small error for an input vector x 6∈ X .

1The word ’typical’ is used for the minimum-norm least-squares solution.

Under the assumption f(·) ∈ HK , the generalization er-
ror of f̂(·) is defined as

J
(gen)
1 (f̂(·)) = ||f(·) − f̂(·)||2HK

, (7)

where || · ||HK denotes the induced norm of HK . The va-
lidity of Eq.(7) as the measure of the generalization error is
supported by

|f(x) − f̂(x)| = |〈f(·) − f̂(·),K(·, x)〉HK
|

≤ ||f(·) − f̂(·)||HK K(x, x)1/2, (8)

obtained by the reproducing property of kernels and the
Schwarz’s inequality, where x is an arbitrary input vector in
D which may not be in X . Note that if f(·) 6∈ HK , Eq.(7) is
meaningless since Eq.(8) does not make sense, which implies
that we can not discuss generalization capability of kernel
machines when f(·) 6∈ HK from the theoretical point of
view.

Next, we confirm that the solution Eq.(6) is identical to the
optimal solution in terms of the generalization error defined
by Eq.(7). Since we assume that HK is separable, there exists
a countable set {(αk,zk) | k ∈ {1, . . . , N}} with αk ∈ R
and zk ∈ D such that

f(·) =
N∑

k=1

αkK(·, zk). (9)

Therefore, Eq.(7) is reduced to

J
(gen)
1 (f̂(·)) =

∥∥∥ N∑
k=1

αkK(·, zk) −
∑̀
i=1

ciK(·,xi)
∥∥∥2

HK

= α′G
(K)
Z α + c′G

(K)
X c − 2c′G

(K)
XZ α, (10)

where Z = {z1, . . . ,zN}, G
(K)
Z = (K(zi, zj)) and G

(K)
XZ =

(K(xi, zj)). Since J
(gen)
1 (f̂(·)) is a positive quadratic form

with respect to c,

∂J
(gen)
1 (f̂(·))

∂c
= 2G

(K)
X c − 2G

(K)
XZ α = 0 (11)

yields the optimal solution and a typical optimal solution is
given as

ĉ
(gen)
1 = (G(K)

X )+G
(K)
XZ α = (G(K)

X )+y, (12)

since y = G
(K)
XZ α holds from Eq.(9), that agrees with Eq.(6)

which is obtained by the empirical error minimization. There-
fore, it is confirmed that the empirical error minimization
yields the optimal solution in terms of the generalization er-
ror Eq.(7) and the solution can be constructed by the given
training date set since Eq.(12) does not contain the unknown
parameter α. Note that these fasts can be also confirmed by
the optimal solution of a linear inversion problem of the sam-
pling process [6, 7]. Also note that the minimizer of the gen-
eralization error gives the orthogonal projection of f(·) onto
the linear subspace spanned by {K(·, xi) | i ∈ {1, . . . , `}},
whose orthogonality is specified by the metric of HK .
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4. ANALYSES ON MULTIPLE KERNEL
REGRESSOR

In this section, we discuss the multiple kernel regressor with
the class of kernels K = {K1, . . . , Km}. The model of a
learning result is given as

f̂(·) =
m∑

p=1

∑̀
i=1

c
(p)
i Kp(·, xi), (13)

with some coefficients c
(p)
i , (i ∈ {1, . . . , `}, p ∈ {1, . . . , m})

[5]. We assume that HKp ⊂ HK for any p ∈ {1, . . . ,m} so
that the evaluation of the generalization error by the norm of
HK makes sense 2.

The empirical error of the model Eq.(13) is defined as

J
(emp)
2 =

∑̀
j=1

(
yj −

m∑
p=1

∑̀
i=1

c
(p)
i Kp(xj , xi)

)2

, (14)

which can be also represented by

J
(emp)
2 =

∥∥∥y −
m∑

p=1

G
(Kp)
X c(p)

∥∥∥2

, (15)

where c(p) = [c(p)
1 , . . . , c

(p)
` ]′. Since J

(emp)
2 is a pos-

itive quadratic form with respect to each c(p), the mini-
mizer of J

(emp)
2 is obtained by ∂J

(emp)
2 /∂c(p) = 0 for all

p ∈ {1, . . . , m}, which is reduced to the linear equation:

M1c = b1, (16)

where

M1 =


(G(K1)

X )2 · · · G
(K1)
X G

(Km)
X

...
. . .

...
G

(Km)
X G

(K1)
X · · · (G(Km)

X )2

 ,

c = [(c(1))′, . . . , (c(m))′]′ and b1 = [G(K1)
X , . . . , G

(Km)
X ]′y.

Therefore, a typical optimal solution in terms of the empirical
error is obtained by

ĉ
(emp)
2 = M+

1 b1. (17)

Next, we investigate the minimizer of the generalization
error of the model Eq.(13), which is defined as

J
(gen)
2 (f̂(·))

=
∥∥∥ N∑

k=1

αkK(·, zk) −
m∑

p=1

∑̀
i=1

c
(p)
i Kp(·,xi)

∥∥∥2

HK

= α′G
(K)
Z α − 2

m∑
p=1

(c(p))′G(Kp)
XZ α

+
m∑

p=1

m∑
q=1

(c(p))′H(Kp;Kq)
X c(q), (18)

2As shown in the next section, this assumption is natural in the light of
the way of using the popular Gaussian kernels in multiple kernel regressors.

where H
(Kp;Kq)
X = (〈Kp(·, xi),Kq(·, xj)〉HK ). Since

J
(gen)
2 (f̂(·)) is a positive quadratic form with respect to

each c(p), the minimizer of J
(gen)
2 (f̂(·)) is obtained by

∂J
(gen)
2 (f̂(·))/∂c(p) = 0 for all p ∈ {1, . . . , m}, which

can be represented by the linear equation:

M2c = b2, (19)

where

M2 =


H

(K1;K1)
X H

(K1;K2)
X · · · H

(K1;Km)
X

H
(K2;K1)
X H

(K2;K2)
X · · · H

(K2;Km)
X

...
...

. . .
...

H
(Km;K1)
X H

(Km;K2)
X · · · H

(Km;Km)
X

 ,

and b2 = [G(K1)
ZX , . . . , G

(Km)
ZX ]′α. Therefore, a typical opti-

mal solution in terms of the generalization error is obtained
by

ĉ
(gen)
2 = M+

2 b2. (20)

In general, solutions (17) and (20) are different, which implies
that the empirical error minimization can not always yield the
optimal solution of the multiple kernel regressor in terms of
the generalization error, while it gives the optimal solution
in the single kernel regressor as shown in the previous sec-
tion. Moreover, it is also confirmed that the optimal solution
in terms of the generalization error can not be constructed
from the training data set, since we can not obtain G

(Kp)
XZ α

in b2 from y = G
(K)
XZ α unless we have a priori information

about Z and α. In the following contents, we call the function
Eq.(13) with ĉ

(gen)
2 ’theoretical limit’ of the multiple kernel

regressors.

5. NUMERICAL EXAMPLE

In this section, we show an example in order to confirm that
the learning result by Eq.(17) and the theoretical limit by
Eq.(20) actually differ.

Generally, we can not always calculate the matrices
H

(Kp;Kq)
X in Eq.(19). On the other hand, we developed

the way to calculate them for the popular Gaussian kernels in
[12], which is defined as

Kσ(x, y) =
1√
2πσ

exp
(
− (x − y)2

2σ2

)
, (21)

where σ denote the positive shape parameter. We show some
important results obtained in [12], which is used in our nu-
merical examples given below.

Theorem 1 [12] For any positive parameters σ1 and σ2, sat-
isfying 0 < σ2 < σ1,

HKσ1
⊂ HKσ2

holds.
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Table 1. Empirical error, generalization error, and L2 error by the EMP and the LIM with respect to σ.
J

(emp)
2 J

(gen)
2 J

(L2)
2

σ EMP LIM EMP LIM EMP LIM
0.2 1.88 × 10−17 1.29 × 101 9.05 × 108 7.38 × 102 3.23 × 103 1.45 × 101

0.4 2.73 × 10−18 2.27 × 100 5.11 × 107 8.83 × 101 7.51 × 102 3.01 × 100

0.6 3.26 × 10−18 1.19 × 10−1 2.98 × 105 6.01 × 100 4.68 × 101 4.02 × 10−1

0.8 4.71 × 10−18 8.13 × 10−4 2.03 × 103 1.57 × 10−2 1.81 × 100 6.77 × 10−2

1.0 1.45 × 10−18 1.96 × 10−21 5.80 × 101 1.56 × 10−3 1.57 × 10−1 1.00 × 10−1

Theorem 2 [12] For any positive parameter σ3, satisfying
0 < σ3 < min{σ1, σ2},

〈Kσ1(·, x), Kσ2(·, y)〉HKσ3
= K√

σ2
1+σ2

2−σ2
3
(x, y) (22)

holds.

According to Theorem 1, Kσ with

σ < min{σ1, . . . , σm} (23)

can be a kernel of the host RKHS for a class of kernels K =
{Kσ1 , . . . , Kσm}. Moreover, Theorem 2 enables us to calcu-

late H
(Kσp ;Kσq )

X .
In multiple kernel regressors with the Gaussian kernels,

we try to estimate the unknown true function by the Gaus-
sian kernels which are steeper as much as the steepest part
of the unknown true function and by more gradual ones cor-
responding to larger shape parameters for gradual part of the
unknown true function. Therefore, selection of σ satisfying
Eq.(23) seems to be natural in terms of a practical sense.

We consider a class of kernels K = {Kσ1 ,Kσ2} with
σ1 = 1.0 and σ2 = 1.2; and adopt Kσ with a σ satisfy-
ing Eq.(23). We constructed an unknown true function f(·)
by Eq.(9) with Kσ, N = 20 and randomly generated αk ∈ R
and zk ∈ R by the standard normal distribution; and also gen-
erated training input points randomly (by the standard normal
distribution) with ` = 5 and training output values by these
points and f(·).

Figure 1 shows an example of the unknown true func-
tion f(·), the learning result by the empirical error minimizer
ĉ
(emp)
2 , and the theoretical limit obtained by ĉ

(gen)
2 with σ =

0.8, in which the points in the training data set are denoted
by ’+’. According to Fig.1, it is confirmed that the learning
result by the empirical error minimization is surely different
from the theoretical limit.

Table 1 shows J
(emp)
2 , J (gen)

2 , and L2 norm of f(·)− f̂(·)
(as a reference and denoted by J

(L2)
2 ) of the learning results

by the empirical error minimizer (denoted by ’EMP’) and
the theoretical limit (denoted by ’LIM’) for the same setting
with Fig.1 with respect to σ = 0.2, 0.4, 0.6, 0.8, 1.0. Accord-
ing to Table 1, it is confirmed that the EMP surely obtains a
smaller empirical error, while it fails to obtain a small gen-
eralization error evaluated in HKσ , which is a consequence

-1

-0.5

 0

 0.5

 1

 1.5

 2

-6 -4 -2  0  2  4  6

true function

based on empirical error minimization

theoretical limit

Fig. 1. An example of a true function, the learning result by
empirical error minimization, and the theoretical limit.

of our theoretical analyses, and also in L2, which is only
supported numerically. Note that ĉ

(emp)
2 in this example is

a stable solution since the training data set is noise-free and
1/cond(M1) = 2.01 × 10−9, which is much larger than the
machine epsilon.

6. CONCLUSION

In this paper, we theoretically analyzed a typical multiple ker-
nel regressor and its model space; and revealed the theoretical
limit of the model space in terms of the generalization error,
defined by the norm of the difference between an unknown
true function and an estimated one, evaluated in an appro-
priate reproducing kernel Hilbert space. On the basis of the
analyses, we showed that the empirical error minimization
does not always attain the minimum generalization error in
contrast to single kernel regressors; and also showed that the
theoretical limit can not always be constructed from a given
training data set. These results give us a motivation of de-
veloping a novel framework of multiple kernel regressors that
yields a learning result closer to the theoretical limit. Analy-
ses for additive noise and properties of the solution obtained
by a regularization scheme are ones of our future works that
should be undertaken.
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