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ABSTRACT

The present paper dealt with speaker clustering for speech corrupted
by noise. In general, the performance of speaker clustering signif-
icantly depends on how well the similarities between speech utter-
ances can be measured. The recently proposed i-vector-based cosine
similarity has yielded the state-of-the-art performance in speaker
clustering systems. However, this similarity often fails to capture the
speaker similarity under noisy conditions. Therefore, we attempted
to examine the efficiency of spectral clustering on i-vector-based
similarity for speech corrupted by noise because spectral clustering
can yield robustness against noise by non-linear projection. Exper-
imental comparisons demonstrated that spectral clustering yielded
significant improvement from conventional methods, such as ag-
glomerative clustering and k-means clustering, under non-stationary
noise conditions.

Index Terms— spectral clustering, i-vector, noise-robust speaker
clustering.

1. INTRODUCTION

Speaker clustering is a technology to estimate which utterances are
from the same speaker, and it has been an important role in speaker
diarization. Two main approaches have been taken in speaker clus-
tering; the bottom-up and top-down approaches. In the bottom-up
approach, utterances are clustered by iteratively merging the most
similar pair of clusters until a stopping criterion is met (e.x. Bayesian
information criteria [1]). In the top-down approach, the utterances
are clustered by identifying the most appropriate cut that separates
the dissimilar clusters.

In both approaches, the clustering performance significantly de-
pends on how accurately the speaker similarity can be measured. Ac-
curate estimation of the similarity between speech utterances, how-
ever, is difficult when the speech data are corrupted by background
noise. This difficulty arises because the similarity is significantly af-
fected by the degree of similarity between background noises as well
the degree of between speakers, which can make the speaker similar-
ity less confident. A noise-robust similarity measurement, therefore,
is required to achieve noise-robust speaker clustering.

Cosine similarity between i-vectors has yielded reasonable per-
formance in speaker recognition systems because the i-vectors are
separably distributed on the unit hypersphere after being projected
onto the discriminative space obtained by linear discriminative anal-
ysis (LDA) and within-class covariance normalization (WCCN) [2].
The more sophisticated probabilistic LDA (PLDA) is also employed
for scoring [3]. In addition, the i-vector-based approach is shown
to be applicable to noisy data after using noisy data for training the
discriminative space [4].

The i-vector approach has also been applied to speaker cluster-
ing problems [5, 6]. In speaker clustering, an utterance is repre-

sented by an i-vector, and k-means clustering based on cosine simi-
larity is applied for clustering those vectors. Spectral clustering was
evaluated as an alternative to k-means clustering [7, 8, 6]. Gen-
erally, spectral clustering works better than k-means clustering be-
cause of its capability of classifying data with a type of manifold
embedding. However, the authors of [6] concluded that the simple
k-means clustering algorithm provides a sufficiently high accuracy
because i-vectors are linearly separable on the unit hypersphere, and
the cosine distance is, hence, a valid measurement. The assump-
tion that i-vectors are separably distributed on the unit hypersphere
is not always true under noise conditions, because the i-vector con-
tains not only speaker information but also noise information, which
cannot be perfectly eliminated by front-end processing methods such
as LDA and WCCN. In the present paper, therefore, the effective-
ness of spectral clustering is investigated for various types of noisy
speech utterances. The results obtained in the present study can be
useful for developing noise-robust speaker clustering and diarization
systems.

The rest of the present paper is organized as follows. Section
2 briefly reviews i-vector extraction. In section 3, some examples
of the failure of the conventional i-vector-based approach and the
purpose of employing spectral clustering are presented. Section 4
provides a brief explanation of spectral clustering and indicates the
effectiveness of this approach for speech data corrupted by noise. In
Section 5, experimental comparisons are conducted to demonstrate
the effectiveness of spectral clustering for noisy speech. Section 6
concludes this paper and discusses some directions for future work.

2. I-VECTOR AND COSINE SIMILARITY SCORING

For the i-th utterance, the speaker- and channel-dependent GMM
supervector mi is written by the factor analysis model as

mi = m0 + Txi, (1)

where m0 denotes the speaker- and channel-independent GMM
(universal background model; UBM) supervector; T , a rectangular
low-rank matrix, represents the total variability; and xi is a ran-
dom vector having a standard normal distribution. The vector xi

is called the “i-vector” and is calculated using an EM algorithm.
i-vectors contain speaker information as well as intra-speaker vari-
ability derived from difference in channels, phoneme contexts, and
environmental noises. Such nuisance information, however, was
successfully eliminated by using LDA and WCCN [2]. The co-
sine distance is applied to measure the similarity between a pair of
i-vectors, which is extracted as follows:

cos(xi,xj) =
xT

i xj

||xi|| · ||xj ||
, (2)

where xi and xj denote the i-vectors extracted from the i-th and j-th
utterances, respectively.
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Fig. 1. Similarity matrix obtained from (a) clean and (c) noisy utter-
ances. Clustering result obtained by applying k-means clustering on
i-vectors from (b) clean and (d) noisy utterances.

3. SPEAKER CLUSTERING UNDER NOISY CONDITIONS

We compare the similarity matrices calculated from clean and noisy
speech utterances to investigate the effect of noise on the cosine sim-
ilarity score extracted from i-vectors.

Fig. 1 (a) depicts the similarity matrix of 500 utterances from
five speakers in a clean environment. Fig. 1 (c), on the other
hand, depicts the similarity matrix of the same sentences with non-
stationary noise overlapped. In these figures, five rectangles drawn
with dashed lines, S1 to S5, correspond to each speaker’s utterances,
and regions with blue dashed lines indicate the similarity between
utterances from the same speaker. These figures indicate that,
for clean utterances, i-vector-based similarity between the same
speaker’s utterances is larger than that between utterances from
different speakers; these similarities are almost equivalent for noisy
utterances. Figs. 1 (b) and (d) visualize the speaker clustering results
obtained using k-means clustering for clean and noisy utterances,
respectively. These results indicate that i-vector-based similarity can
fail to capture the speaker similarity for noisy utterances even when
it can for the corresponding clean utterances. Therefore, i-vector-
based similarity is insufficient to measure the speaker similarity for
noisy utterances.

Further analysis is performed by investigating the distribution
of i-vectors. Figs. 2 (a) and (b), respectively, depict distributions
of i-vectors obtained from clean and noisy utterances from five
speakers. Each i-vector is projected onto two-dimensional space by
LDA/WCCN projection followed by principal component analysis.
In each figure, different colors correspond to different speakers.

(a) Clean (b) Noisy

Fig. 2. The i-vectors of five speakers after LDA/WCCN projection
onto two-dimensional space. Each color corresponds to speaker.

Algorithm 1 Algorithm of Ng-Jordan-Weiss spectral clustering [9].
1: Calculate cosine-based distance between all pair of i-vectors

D(xi,xj) = 1− cos(xi,xj),∀i, j.
2: Calculate adjacency matrix W ∈ Rn×n

+ , where
(W )ij = exp {−D(xi,xj)} for i 6= j and zero otherwise.

3: Calculate the diagonal matrix D whose (i, i)-th components is
sum of i-th row of W (i.e. (D)ii =

∑n
j=1 wij), and construct

the graph Laplacian L = I −D− 1
2WD− 1

2 .
4: Select t1, · · · , tK , K smallest eigenvectors of L and form T =

[t1, · · · , tK ] ∈ Rn×K .
5: Normalize each row of T to have unit length (i.e. {T̂ }ij =

{T }ij/(
∑

k t
2
ik)

1/2)
6: Cluster row vectors of T̂ via cosine similarity-based k-means

clustering.

These figures clearly show that the distribution of each speaker’s ut-
terances spread over a large and complex region in the case of noisy
utterances, whereas it spreads over a relatively small region in the
case of clean utterances. This result also explains the insufficiency
of k-means clustering: it assumes that each speaker’s utterances are
sampled from a Gaussian distribution.

4. SPECTRAL CLUSTERING

Spectral clustering on i-vector-based similarity is carried out to han-
dle noise corruption in speaker clustering. Here, we describe a brief
explanation of spectral clustering and how it works for speech cor-
rupted by noise.

Spectral clustering is a top-down approach to determine the op-
timal assignment of utterances to speakers; it assumes any pair of
samples in the same cluster has high similarity, while those from
a different cluster should have low similarity. Assume that an in-
dicator vector ti = [ti1, · · · , tij , · · · , tin]T ∈ Rn represents the
assignment of the j-th sample to the i-th cluster. A component tij is
equal to 1/

√
(D)ii if the j-th sample is assigned to the i-th cluster

and equal to zero otherwise. For any indicator vector ti, we have

tTi Lti =
1

2

n∑
j=1

n∑
j′=1

wjj′(tij − tij′)
2, (3)

where wjj′ denotes the similarity between the j-th and j′-th utter-
ances and n denotes the number of utterances. Eq. 3 indicates that
tTi Lti will be small if two samples with large similarity (i.e., wjj′ is
large) have similar coordinates (i.e., tij and tij′ are close). This im-
plied that the indicator vector ti obtained by minimizing Eq. 3 under
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Fig. 3. (a) Similarity matrix calculated from normalized eigen-
vectors of the Laplacian matrix of noisy utterances of five speak-
ers. (b) Clustering result obtained by k-means clustering using the
eigenvectors-based features.

the constraint of all indicator vectors being orthogonal can indicate
a valid clustering result in which pairs of utterances from the same
speaker have a large similarity and those from the different speak-
ers have small similarity. The solution of this minimization problem
is obtained as the K smallest eigenvectors of L. A more detailed
analysis of this algorithm is presented in [9].

Fig. 3 (a) depicts the similarity matrix of noise-corrupted utter-
ances calculated using the smallest 20 normalized eigenvectors of
the Laplacian matrix L. This figure shows that these eigenvectors
are reasonable features to measure the similarity in speakers because
the similarity thus obtained between the same speaker’s utterances
is higher than that from different speakers. Fig. 3 (b) depicts the
clustering result obtained by k-means clustering on the eigenvectors-
based features. This figure shows that spectral clustering can per-
fectly cluster the utterances even when they are corrupted by noise.

Next, we present a more detailed analysis of the effectiveness
of eigenvector-based features for measuring the speaker similarity
under the noise conditions. The spectral clustering utilizes the K
smallest eigenvectors of the Laplacian matrix as features of each ut-
terance. Therefore, we have

L = TΛTT =

n∑
i=1

λitit
T
i , (4)

where Λ = [λ1, · · · , λN ] and T = [t1 · · · , tN ] denote the
eigenvalues and eigenvectors of the Laplacian matrix, respectively.
Roughly speaking, the Laplacian matrix of the noisy utterances
can be factorized into two matrices: the similarity matrix primarily
obtained from speech signals and that from noise signals. Here,
there exists a clear pattern that intra-speaker similarity is relatively
higher than inter-speaker similarity. The similarly in terms of noise
signals, on the other hand, is consistently low because there are no
correlations between noise signals. Considering this fact and that
0 = λ1 < λ2, · · · < λn, smaller eigenvectors should correspond
to a pattern representing speaker similarity, whereas larger eigen-
vectors should correspond to a pattern representing similarity in
noise.

Fig. 4 depicts the second, sixth, 100th, and 250th smallest eigen-
vectors of the Laplacian matrix of noisy utterances. This figure
shows that the smaller eigenvectors restore speakers’ similarity pat-
terns while the larger ones restore the similarity patterns of noise.

(a) t2 (b) t6

(c) t100 (d) t250
Fig. 4. The (a) second, (b) sixth, (c) 100th and (d) 250th small-
est eigenvectors of the Laplacian matrix calculated from noisy utter-
ances.

5. SPEAKER CLUSTERING EXPERIMENTS

Experimental comparisons were performed to demonstrate robust-
ness of spectral clustering against noise. For that purpose, the fol-
lowing three methods were evaluated under various types of noise.

• GMM-HAC: Agglomerative clustering in which each cluster
is modeled as a Gaussian mixture model (GMM). Similarity
between clusters is defined as a cross likelihood ratio between
these GMMs [10].

• IV-KMEANS: k-means clustering using cosine distance be-
tween i-vectors [5, 6].

• IV-SC: Spectral clustering using cosine distance between i-
vectors.

The present experiments were conducted using the corpus of spon-
taneous Japanese (CSJ) [11].

5.1. Experimental setups

The clean and noisy speech utterances from CSJ were used for eval-
uation. Note that speech data from CSJ are basically uncorrupted by
noise. The clean evaluation sets were constructed as follows. All of
the lecture speech in CSJ were divided by the utterance on the ba-
sis of silence. Then, 10 speakers were randomly selected. Finally,
their 50 utterances were randomly selected. Each utterance is from
both the same and different lectures. Four combinations of different
speakers yielded four evaluation sets and the resulting performance
was the average over those four sets.

In addition, noisy speech data were developed by overlapping
each utterance with seven types of noise at the signal-to-noise ratio
(SNR) of about 0 dB. The noise includes four types of environmental
noise (Crowd, Party, Street, and Station) sampled from JEIDA noise
database [12] and three types of background music sampled from
RWC music databases [13]. Note that crowd and party noises are
stationary while street and station noises are non-stationary. The
other experimental setups for evaluating noisy speech were the same
as for clean speech.

The evaluation criteria was the K value, which is the geometric
mean of the average speaker purity and average cluster purity [14].
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Fig. 5. Clustering accuracy as a function of number of eigenvectors.

5.2. Front-end processing

Acoustic feature parameters consisted of 12-dimensional mel-
frequency cepstral coefficients (MFCCs) plus log-energy and their
delta parameters, yielding a 26 dimensional vector for every 10
ms. A gender-independent UBM of 128 Gaussians with diagonal
covariance matrices was trained on the speech data taken from the
Japanese newspaper article sentence (JNAS) [15] and Continuous
Speech Corpus for Research (ASJ-JIPDEC) databases [16]. Those
speech data were overlapped with four types of noise (air condi-
tioner, car, factory, and plant) from JEIDA noise database and the
total variability, LDA, and WCCN matrices were trained on those
noisy data. The 150-dimensional i-vectors were extracted and finally
projected onto 100-dimensional vectors.

5.3. Experimental results

5.3.1. Number of Eigenvectors

In ideal spectral clustering, samples from different clusters are in-
finitely far apart, yielding always zero-similarity between those sam-
ples. In this case, the eigenvectors of the Laplacian matrix are con-
sistent to the optimal indicator vectors and the optimal number of
eigenvectors coincides the number of clusters. However, this as-
sumption is not always true in the noise conditions because the sim-
ilarity between distinct speakers’ utterances can be large. Figure 5
depicts the clustering accuracy as a function of the number of eigen-
vectors. Eight solid lines describe the clustering accuracy obtained
from spectral clustering in clean and seven noise conditions. This
figure shows that the highest clustering accuracy was achieved when
the number of eigenvectors was larger than that of speakers. This
was noticeable particularly in the noise conditions because further
eigenvectors are required to recover the Laplacian matrix from the
noisy utterances. The experiments below used 50 eigenvectors pro-
viding the highest performance for all conditions.

5.3.2. Clustering Accuracy

Table 1 lists the K values obtained using three clustering meth-
ods for clean and noisy speech data. This result demonstrates that
the clean utterances were almost perfectly clustered, irrespective of
methods. However, the agglomerative clustering (GMM-HAC) and
k-means clustering on i-vectors (IV-KMEANS) consistently deteri-
orated clustering accuracy in noisy conditions and yielded signifi-

Table 1. K values obtained from Speaker clustering experiment.
Average duration of each utterance is about 20 seconds.

Environment GMM-HAC IV-KMEANS IV-SC
Clean 0.955 1.000 1.000

Stationary Crowd 0.906 0.997 1.000
noise Party 0.907 0.958 0.999

Non-Stationary Street 0.425 0.540 0.976
noise Station 0.591 0.591 0.979

BGM
Classic 0.769 0.930 0.996

Jazz 0.821 0.989 0.999
Pops 0.301 0.383 0.973

Table 2. K values obtained from Speaker clustering experiment.
Average duration of each utterance is about 10 seconds.

GMM-HAC IV-KMEANS IV-SC
Clean 0.900 1.000 1.000

Stationary Crowd 0.672 0.809 0.981
noise Party 0.727 0.752 0.964

Non-Stationary Street 0.225 0.331 0.876
noise Station 0.398 0.470 0.820

BGM
Classic 0.355 0.604 0.964

Jazz 0.467 0.789 0.983
Pops 0.193 0.263 0.665

cant degradation particularly in the non-stationary and BGM (pops)
noise conditions. Note that IV-KMEANS outperformed GMM-HAC
in the stationary noise conditions but not in the non-stationary noise
conditions. The i-vector-based similarity is therefore sufficient to
handle the stationary noise corruptions but insufficient for the non-
stationary noise. In contrast, spectral clustering on i-vectors (IV-SC)
worked in both stationary and non-stationary noise conditions with
small or almost no degradation in clustering performance compared
with the clean conditions. We also evaluated these methods on rel-
atively short utterances. Here, the average duration is about 10 sec-
onds. The result is shown in Table 2, and demonstrates that IV-SC
also outperformed GMM-HAC and IV-KMEANS for these short ut-
terances.

6. CONCLUSION

i-vector-based spectral clustering was applied to speaker clustering
in various types of noise and yielded significant gains from conven-
tional agglomerative and i-vector-based k-means clustering.

This work assumes the correct number of clusters is known and
does not focus on estimating it. Several attempts have been made
to discover the number of clusters equal to the optimal number of
eigenvectors on the basis of the largest gradient of eigenvalues for
clean speech data [8, 6]. However, the present work showed that to
achieve high accuracy of speaker clustering in the noise conditions,
more eigenvectors than the number of actual clusters should be used.
This implies that eigenvalue-based method is no more applicable to
estimate the number of clusters for noisy speech data and the alter-
native approach is required. An attempt will be made as a future
work to estimate the optimal number of clusters using more sophis-
ticated manner, e.g., self-tuning spectral clustering [17]. In addition,
PLDA scoring [3] will be utilized to construct more robust similarity
matrix.
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