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ABSTRACT
We introduce an online, time-dependent clustering algorithm
that employs a dynamic probabilistic topic model. The pro-
posed algorithm can handle data that evolves over time and
strives to capture the evolution of clusters in the dataset. It
addresses the case where the entire dataset is not available at
once (e.g., the case of data streams) but an up-to-date cluster-
ing of the data at any given time is required. One of the main
challenges of the data stream setting is that the computational
cost and memory overhead must stay bounded as the num-
ber of data points increases. Our proposed algorithm has a
Dirichlet process-based generative component combined with
a sequential Monte Carlo sampler for posterior inference. We
also introduce a novel modification to the sampling process,
called targeted sampling, which enhances the performance of
the SMC sampler. We test the performance of our algorithm
with both synthetic and real datasets.

Index Terms— Clustering, Dirichlet Process, Sequential
Monte Carlo Sampling, Targeted Sampling

1. INTRODUCTION

We consider the problem of online, time-dependent cluster-
ing, where the goal is to cluster a series of data items ar-
riving sequentially while explicitly taking into account their
time stamps. More specifically, the input is a sequence of
data items {x1, x2, . . .}, which can either be a data stream or
a sequence of limited size, as long as items are received one-
by-one. Each data item xi is associated with a timestamp ti,
denoting the time when it was generated or received. We also
assume that each data item consists of elements belonging to
a predefined set, V , and that all of the elements are important
to its meaning. The required output is an evolutionary clus-
tering updated with each new data item. Besides being online
and time-dependent, the algorithm must learn the number of
clusters automatically and should use bounded computational
resources as the number of data items increases.

Typical examples for the input include search engine
queries, where we want to cluster queries in order to learn
current search trends in real-time, or titles of news or scien-
tific articles, where we want to automatically identify topics
or themes. Online processing of data items is important in
two settings: when the dataset is too big to be processed by

offline methods or when we receive data items sequentially
and do not want to wait until all the items are available.

Contributions: We propose a clustering algorithm based
on probabilistic topic models which is both online and time-
dependent. Topic models provide us with a generative frame-
work to perform clustering in a principled analytical, as op-
posed to heuristic, fashion. We combine a time-dependent
generative model, which is an extension of the Dirichlet Pro-
cess Mixtures (DPM) model, with an online Sequential Monte
Carlo (SMC) sampler. We also implement an adaptive sam-
pling scheme which enhances the SMC sampler and improves
the performance of the algorithm.

2. BACKGROUND AND RELATED WORK

Numerous clustering algorithms use Dirichlet processes
(DPs) [1] for dynamic clustering [2–5]. DPs are nonpara-
metric and thus eliminate the need to assume and specify a
fixed number of clusters. A DP is an extension of the Dirich-
let distribution that enables us to use infinite sets of events.
The stick-breaking representation, due to Sethuraman [6], de-
fines the DP(α,G0) constructively as follows. Let (p′k)∞k=1,
(pk)∞k=1, and (ψk)∞k=1 be defined as: p′k ∼ Beta(1, α),
pk = p′k

∏k−1
l=1 (1 − p′l), ψk ∼ G0, where Beta(1, α) denotes

the beta distribution. Then, the Dirichlet Process P can be
expressed as:

P (ψ) =

∞∑
k=1

pkδψk
(ψ) (1)

where δk is the Dirac measure. Note that
∑∞
k=1 pk = 1 with

probability 1. Equation (1) is referred to as the stick-breaking
construction for Dirichlet processes [7].

Dirichlet process mixtures (DPMs) are generative models
using a DP as a nonparametric prior on the mixture parame-
ters. The generative model determines the cluster parameters
θi and the observation xi as follows: G ∼ DP(α,G0), θi|G ∼
G, xi|θi ∼ F (θi), where F (θi) is problem-dependent. ppp =
(pk)∞k=1 and ψψψ = (ψk)∞k=1 are defined as in the DP model
and we also introduce a cluster assignment variable zi such
that zi ∼ ppp. With these notations, the DPM model is equiva-
lent to xi ∼ F (ψzi) and θi = ψzi .

Since the computation of the posterior in DP-based gen-
erative models is intractable, exact inference is not possible.
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There are three main approaches to the inference: Markov
chain Monte Carlo (MCMC) [8], variational inference [9] and
Sequential Monte Carlo (SMC) samplers [10]. Given that
we want an online algorithm, we use SMC samplers since
the other two approaches are either offline or assume that the
number of items is known in advance [11–13]. SMC methods
can be used to approximate a distribution evolving over time.

Almost all existing adaptive clustering algorithms based
on DPs are either order-dependent (as opposed to time de-
pendent) [14] or require a batch arrival or an epoch set-
ting [3–5, 15]. Order dependence implies that cluster iden-
tification is dependent on the order-of-arrival as opposed to
the actual timestamps of the data items. For example, the
time-dependent Dirichlet process mixture model (TDPM),
introduced in [5], requires that data is assembled into epochs,
and cluster dependency is based on the time between epochs
rather than individual timestamps. The exchangeability prop-
erty enforced in most of the DPM models prevents the ex-
plicit inclusion of dependence of the data items on external
elements or properties, such as time-of-arrival. One model
that supports time-dependence and is amenable to online
inference is the time-sensitive Dirichlet process mixture (TS-
DPM) model introduced in [16]. Zhu et al. employ a temporal
weight function for each cluster that depends on the cluster
assignment history. This allows them to define a prior prob-
ability of cluster assignments which is similar to a DPM
framework but evolves over time. MCMC methods are pro-
posed in [16] to achieve offline inference.

With regard to posterior inference, SMC sampling strate-
gies were applied to static DPM models in [17,18] for offline
inference; here we develop SMC samplers for the TDPM and
TS-DPM models to obtain online time- or order-dependent
clustering algorithms.

3. ONLINE TIME-DEPENDENT CLUSTERING

We propose a framework which uses TS-DPM or TDPM as
the generative model and an SMC sampler as the inference
technique. Due to space limitations, we only describe the de-
tails for the TS-DPM model here; the model derivation and
posterior inference are similar for the TDPM model.

3.1. Generative model

Consider a sequence ofNd data items x1:Nd
, where each item

xi, 1 ≤ i ≤ Nd is associated with a timestamp ti ∈ R.
We assume that the items are ordered in chronological order:
ti ≤ tj ,∀i ≤ j. We denote by zi ∈ N the cluster index of
item xi. Each cluster index k is associated with a multino-
mial distribution θk over the set of all possible elements, V:
p(xi|zi = k) =

∏
v∈V θk(v)xi(v), where xi(v) is the num-

ber of time element v appears in item xi. We assume that the
size of the V is fixed, say V . For each cluster k, we choose
the prior on θk to be a Dirichlet distribution G0 with parame-

ters (β,mmm), wheremmm is a vector of size V representing a base
measure on the vocabulary and β ∈ R expresses the strength
of the prior.

Following [16], we introduce a temporal weight func-
tion w(t, k) for each cluster index k that depends on the
current time t and the collection of previous assignments
{z1, . . . , zi−1}: w(t, k) =

∑
j|tj<t κ(t− tj) · δ(zj , k), where

κ is a kernel function (e.g., κ(τ) = exp(−λτ)) and where the
Kronecker function δ(a, b) = 1 if a = b and 0 otherwise. The
prior probability of assigning xi to cluster k given previous
cluster assignments, {z1, . . . , zi−1}, is defined as:

p(zi = k|z1, . . . , zi−1) = p(zi = k|w(ti, ·)) (2)

=


w(ti, k)∑

k′ w(ti, k′) + α
if k ∈ {z1, . . . , zi−1}

α∑
k′ w(ti, k′) + α

if k is a new cluster
(3)

This differs from the classical DPM framework as a temporal
weight defined by the kernel function κ (instead of a fixed
weight of 1) is assigned to past observations. The kernel κ
is usually defined as a non-negative, decreasing function such
that limτ→∞ κ(τ) = 0. This way, the very old data items
will have a negligible effect on the prior of a new element.
Approximating the weight of very old items as 0 gives:

κ2(τ) =

{
e−λτ if τ < τlim

0 if τ ≥ τlim
(4)

Therefore, each data item impacts the prior probability of new
items only for the duration of τlim. Using the approximation
proposed in κ2 enables us to delete data old data items as soon
as their time expires (i.e., after τlim). This reduces the size of
required memory as well as the computation time. However,
by using a temporal weight function, we lose the exchange-
ability of the model and cannot use many typical inference
techniques such as Gibbs sampling or variational inference.

3.2. Posterior inference

For n ∈ {1, . . . , Nd}, let yn = (xn, tn) be the n-th obser-
vation. Let also zn,j , with n ≥ j, denote the cluster as-
signment of item yj after the n-th item has been seen and let
zzzn = {zn,1, . . . , zn,n}. Posterior inference in the TS-DPM
model aims at inferring zzzn given x1:n and t1:n. According to
Bayes’ rule, we have:

p(zn,i = k|zzzn,−i, x1:n) ∝ p(zn,i = k|zzzn,−i)·p(xi|xxx−i:zzz−i=k)
(5)

where zzzn,−i = {zn,j |j 6= i} and xxx−i:zzz−i=k = {xj |j 6=
i, zn,j = k}. The first term on the right hand side can be
expressed as:

p(zn,i = k|zzzn,−i) ∝ p(zn,i = k|zzzn,1:i−1)×(
n∏

m=i+1

p(zn,m|zzzn,1:m−1)

)
(6)
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which in turn can be expanded using equation (3).
Given the Dirichlet prior and the multinomial likelihood,

we can integrate out the cluster parameters to get:

p(xi|xxx−i:zzz−i=k) =

∫
p(xi|θ)p(θ|xxx−i:zzz−i=k)dθ

=
Γ(
∑
v fv + β)∏

v Γ(fv + βmv)

∏
v Γ(xi(v) + fv + βmv)

Γ(
∑
v xi(v) +

∑
v fv + β)

(7)

where fv denotes the counts of word with index v ∈ {1, . . . , V }
in xxx−i:zzz−i=k and Γ(·) denotes the Gamma function. Thus,
for each existing cluster, we only need to store two pieces
of information: the number of deleted items that belonged to
this cluster and the counts of their words.

We use an SMC sampler to approximate the posterior dis-
tribution. The SMC sampler allows us to revise previous clus-
ter assignments in order to improve clustering performance.
Let πn(zzzn) = p(zzzn|yyy1:n) denote the posterior distribution of
a sequence of observations. For the TS-DPM model, an un-
normalized expression of πn(zzzn) can be obtained using equa-
tion (5). Let us denote by γn(zzzn) this unnormalized poste-
rior and let Zn denote the normalizing constant: πn(zzzn) =
γn(zzzn)/Zn. As γn(zzzn) is known point-wise, we can apply
importance sampling and hence we can use the SMC sampler
framework introduced in [10].

After the n-th observation, we partition the assignment
vector zzzn into three subsets zzzn,r, zzzn,d and {zn,n}. r is a sub-
set of {1, . . . , n−1} and is called the active set. It contains the
indices of the previous assignments that we re-evaluate when
introducing the new observation yn. In [17], Ulker et al. ini-
tialize r as {1, . . . , Q} and then increase all the indices of r
by Q in modulo n every time step. In essence, this strategy is
a superposition of a particle filter with a Gibbs sampler run-
ning in the background to improve its accuracy. We propose
a more effective method to choose r later in this section.

In the SMC sampler framework, the posterior distri-
bution is approximated by a set of Np weighted particles
{zzzin,W i

n}1≤i≤Np
where i is the index of the particles and n

is the number of observed items. Each particle zzzin is a vector
of all the cluster assignments. When a new observation yn+1

becomes available, the particles and their weights are updated
to obtain a new set {zzzin+1,W

i
n+1}i. This update can be done

in a number of ways. In this work, we use the annealed SMC
framework [18]. Annealing consists of replacing the fixed
novelty parameter of the DPM model by a value αn that
changes at each iteration and that converges to a fixed value
α. The weight update for the annealed target posterior is:

vn(zzzn−1, zzzn) ,
Wn(zzzn)

Wn−1(zzzn−1)

=
γn(zzzn)πn(zzzn−1,r|zzzn,d)

γn−1(zzzn−1)πn(zn,n, zzzn,r|zzzn,d)

3.3. Enhancements

To adapt our proposed inference methodology to an online,
time-dependent setting, we introduce two enhancements.
First, we keep the required memory bounded by limiting the
resampling set to {x|t− tx < τlim}. For each existing cluster
k, we store the quantity w̃k =

∑
ti<ts|zi=k e

−λ(ts−ti), where
ts denotes the timestamp of the last deleted item, and . Then,
we can compute the weight of cluster k at time t > ts as fol-
lows: w(t, k) =

∑
xi|τ≤ti<t e

−λ(t−ti) · δ(zi, k) + e−λ(t−ts) ·
w̃k. Also, note that we only need ts, {w̃k}k, and the count
of words in deleted items to compute the likelihoods, priors
and consequently, weight updates. Thus, while preserving
the principles of SMC sampler, this enhancement reduces the
required history size and computation time and keeps them
bounded as new items arrive.

The second enhancement, which we call targeted sam-
pling, strives to choose the active set more efficiently. The
approach to sampling in the SMC framework in [17] is blind:
the active set is defined solely based on the position of the
items. In contrast, targeted sampling focuses the active set on
those items whose cluster assignments are less concrete,
i.e., items with two or more significant cluster weights.
To quantify uncertainty in the cluster assignment, for each
item, we introduce a sample uncertainty metric ρ, defined
as ρ(zn−1,j) = 1/

∑Kn−1

k=1 p̂n−1,j(k)
2, where p̂n−1,j(k) =∑N

i=1 w
i
n−1δ(z

i
n−1,j = sk) and Kn−1 = {s1, . . . , sKn−1

} is
the set of all cluster labels identified by the particles at time
n− 1. We have 1 ≤ ρ ≤ Kn−1; the lower bound is obtained
when one of the probabilities is one and the upper bound is
obtained when all probabilities are equal. A higher value of
ρ means more uncertainty in the cluster assignment. We still
identify an active set, but now resample assignment zn−1,j
within the set with a probability proportional to ρn−1,j . As
we only resample a fraction of the previous assignments, we
can increase the size of the active set and improve efficiency.

4. APPLICATION TO DATASETS

4.1. Synthetic dataset

We build a synthetic dataset which is a time-dependent ex-
tension of the dataset presented in [19]. We consider a fixed
vocabulary size, V = 128, with a fixed number of clusters,
Nk = 15. Each cluster is characterized by a uniform distri-
bution over a set of vocabulary elements (ranging uniformly
in size between 10 and 15). Each data item has between 3
and 7 elements drawn from its associated cluster. Items ar-
rive according to a Poisson process with rate λ = 30 items
per day. The popularity of each cluster evolves over time and
is specified by a weighted Gaussian, with weight drawn uni-
formly between 1 and 5, mean drawn uniformly over the time-
interval of data item generation, and standard deviation uni-
form between 2.5 and 5 days. When an item is generated, the
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probability of its assignment to a given cluster is proportional
to its current popularity.

Since we know the ground truth clusterings, we can use
external clustering evaluation metrics such as the normalized
mutual information (NMI) or the f-measure [20]. We com-
pare the results of three algorithms with different generative
models (TS-DPM [16] , TDPM [4] and GPU [21]) each paired
with an SMC sampler. For the TDPM and GPU models, we
use 1 day as the epoch. We also examine the impact of using
the targeted sampling procedure. The results are presented
in Table 1. We see that TS-DPM framework outperforms the
other two generative models. This is probably due to its abil-
ity to take into account the actual time differences between
data items, allowing it to better model the cluster popularity
evolution. The proposed targeted sampling scheme improves
the performance of all three algorithms.

Model Sampling
Scheme NMI f -measure

TS-DPM non-targeted 0.81 (0.02) 0.69 (0.04)
targeted 0.90 (0.01) 0.86 (0.02)

TDPM non-targeted 0.74 (0.01) 0.51 (0.03)
targeted 0.81 (0.01) 0.67 (0.02)

GPU non-targeted 0.78 (0.01) 0.57 (0.02)
targeted 0.82 (0.02) 0.70 (0.04)

Table 1. Performance comparison for synthetic data

4.2. Real-world dataset

We collected all Cable News Network (CNN) and New York
Times (NYT) articles from Nov 13th, 2012 to Mar 5th, 2013
and extracted their titles. We removed the stop-words and in-
frequent words. Figure 1 shows the evolution of five of the
clusters identified by the online clustering algorithm with the
TS-DPM model. The figure indicates how the weight (popu-
larity) changes over time and the most common words in each

cluster. We identify relevant real-world events that prompted
the publishing of many articles about the same topic.

We have no ground truth clustering, so we use an inter-
nal evaluation method called the Davies-Bouldin (DB) in-
dex [22], to assess the quality of our clustering. Lower val-
ues of the DB index correspond to better qualities of clus-
tering. Table 2 represents the performance of different al-
gorithms, with and without targeted sampling, on the NYT
dataset. We observe that TDPM performs marginally better
than TS-DPM. The targeted sampling scheme improves the
performance for both algorithms. For comparison, we also
present the values of the DB index for TS-DPM and TDPM
models with targeted sampling on the synthetic dataset. We
observe that the index values for the NYT dataset are smaller
than those for the synthetic dataset, indicating that the algo-
rithm has identified meaningful clustering structure.

Dataset Model Sampling Scheme DB Index

NYT
TS-DPM non-targeted 1.30

targeted 1.26

TDPM non-targeted 1.28
targeted 1.15

Synthetic TS-DPM targeted 1.39
TDPM targeted 1.51

Table 2. Performance comparison for real data

5. CONCLUSION

We propose a novel algorithm for time-dependent clustering
of streaming data based on probabilistic topic models. We
combine a time-dependent DPM generative model with an
SMC sampling scheme, and introduce modifications to bound
computational and memory requirements and improve sam-
pling performance. We show the effectiveness of our algo-
rithm and proposed enhancements by experiments on both
synthetic and real datasets.

FISCAL CLIFF
Boehner, Obama, 
House, Fiscal, ...

SUPER BOWL
Bowl, Super, XLVII, Ad, 
Injuries, ...

Super bowl XLVII on Feb 3 

Obama nominated Hagel for secretary of defense on Jan 7

CHUCK HAGEL
Hagel, Obama, Defense, 
Chuck, Bill, Party, ... Obama made his state of 

the union speech on Feb 12

STATE OF THE UNION ADDRESS
Obama, State, Address, Cuts, 
Union, Deal, War, ...

Fiscal cliff to happen on Dec 31

Congolese rebel group 
took control of Goma 

on Nov 27

CONGO 
Rebels, Congo, 
Goma, Recognition, 
...

Fig. 1. Five sample clusters from NYT dataset and their weight evolution
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