
PATTERN CLASSIFICATION FORMULATED AS A MISSING DATA TASK: THE AUDIO
GENRE CLASSIFICATION CASE

Aggelos Pikrakis1 Yannis Kopsinis2 Symeon Chouvardas3 Sergios Theodoridis2

1 University of Piraeus,
Dept. of Informatics,

Piraeus 18534, Greece.
pikrakis@unipi.gr

2University of Athens,
Dept. of Informatics and

Telecommunications,
Athens 15784, Greece.

kopsinis@ieee.org, stheodor@di.uoa.gr

3Mathematical and Algorithmic Sciences Lab,
Huawei France R&D,

Paris, France.
symeon.chouvardas@huawei.com

ABSTRACT

This paper presents pattern classification to a predefined set of
classes as a missing data task. This is achieved by first augmenting
the feature vector of each training pattern with the corresponding
binary codeword representing its class. A Restricted Boltzmann Ma-
chine (RBM) or a Dictionary Learning (DL) algorithm is then trained
on the augmented feature space. During the classification stage, the
binary codeword of the unknown pattern is treated as missing data.
In the case of the RBM, it is filled in by means of an alternating
Gibbs sampling procedure. In the case of the DL method, the set of
atoms in the dictionary is first learned from the training data, and
the label of the unknown pattern is predicted based on those atoms
that represent this pattern. Application of the method in an audio
genre classification task verifies that the obtained results are highly
competitive compared with state-of-the-art methods. Moreover, the
DL approach lends itself readily for online implementations, in line
with the current trend in big data applications.

Index Terms— Classification, Missing Data, Restricted Boltz-
mann Machine, Dictionary Learning, Audio Genres

1. INTRODUCTION

Over the past few years, variations of the Restricted Boltzmann Ma-
chine (RBM) have been widely used, mainly in the deep learning
context, to solve a variety of tasks, including pattern classification,
de-noising, auto-encoding and missing data inference [1], with the
latter being of particular interest in this paper. Another emerging
trend, which has also been employed in data reconstruction tasks,
has evolved around Dictionary Learning (DL), which is convention-
ally related to sparse representation / coding problems [2], [3].

In this paper, inspired by the inference / reconstruction proper-
ties of the RBMs and the DL methodologies, we propose a method to
view the standard pattern classification task as a missing data prob-
lem, where the missing data are the class labels of the unknown pat-
terns in an augmented feature space. In the case of the RBM, the
missing data reconstruction is the result of a Gibbs sampling proce-
dure, and in the DL context it stems from the combination of a small
number of atoms from a trained dictionary.

The proposed approach, as a concept, departs from the ratio-
nale of conventional classification techniques, since it does not rely
on explicitly training one or more classifiers. On the contrary, the
class label information is embedded in the training data themselves
allowing for the RBM or any DL method to be employed and learn

Symeon Chouvardas was with the University of Athens when this research was
conducted.

how to reconstruct the data of the classes involved. The proposed
point of view enjoys some notable characteristics. The multiclass
scenarios are seamlessly accommodated. Also, the trained RBM can
still serve as a pattern generator, [4], which is a desirable property in
many applications. Furthermore, online DL techniques, e.g. [5] can
be used out of the box, paving the way to online classification and to
a wide range of potential applications. For example, very large-scale
datasets or streaming data can be naturally accommodated on the fly
without excessive storage requirements. Online methods bypass the
need for retraining from scratch whenever new data become avail-
able. Moreover, in principle, can deal with cases where the number
of classes is not a-priori fixed.

The proposed formulation is generic in the sense that it can be
used to design classifiers for a variety of tasks. As a proof of con-
cept, we present an application on audio genre classification, focus-
ing on the publicly available Ballroom Dataset, which defines a hard
multiclass scenario, for which various methods have been designed
in the last decade. These methods have used a variety of classi-
fiers, ranging from the k-NN classifier to SVMs and deep networks
[6], operating on rhythmic features [6–9], timbral features [10], and
their combinations [11–16]. The best classification accuracy for this
dataset has been reported in [9] and [6]. We show that our approach
permits the design of a family of classifiers which exhibit competi-
tive performance and demonstrate that audio genre classification can
be also treated in an online learning context, while preserving high
classification accuracy. Online learning techniques are gaining a lot
of interest in the context of Big Data applications.

The paper is organized as follows: Section 2 presents the new
problem formulation. Sections 3 and 4 presents the label recon-
struction methods based on the RBM and the Dictionary learning
methodologies, respectively. The experimental setup, the classifica-
tion performance of the proposed methods and a comparative study
with reported results are given in Section 5. Finally, conclusions are
drawn in Section 6.

2. FORMULATION OF THE MISSING DATA TASK

Assuming a multiclass problem involving M classes, ωi, i =
1, 2, . . . ,M , and let xT = [x1, x2, . . . , xl] denote the l-dimensional
feature vector representing a pattern, and yT = [y1, y2, . . . , yM]
the respective class label, where yi = 1 if x ∈ ωi and yi = 0,
otherwise. In other words, each label is a codeword, in which
the position of 1 indicates the class to which the respective pat-
tern belongs. Instead of a zero, we can alternatively use a −1.
In principle, more advanced coding schemes can be employed
that can allow higher immunity to noise [17]. Furthermore, let

2026978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

X = {(x1, y1), (x2, y2), . . . , (xN , yN)} denote the training set
consisting of N patterns.

The key idea is to augment the feature vector, x, with the respec-
tive class label coding vector, y, and form the augmented pattern x̄,

such that x̄ =

[
x
y

]
. Therefore, in the augmented feature space,

the training set, X , can now be written as X = {x̄1, x̄2, . . . , x̄N}.
In other words, the information that is carried by the class label is
now “embedded” in the feature vector.

The next step is to feed the training dataset to a learning algo-
rithm. In this paper, we experiment independently, in the extended
space, with RBMs and DL algorithms for the training stage. Note
that, albeit the two approaches look different, at the heart of both
methods lies our desire to model the input patterns in a compact and
data-representative way. During the classification stage, given an
unknown pattern, the trained engine reconstructs the augmented fea-
ture vector elements, that correspond to the missing label by means
of an appropriate algorithm (that depends on which learning scheme
is used). We first present the RBM training scenario and the corre-
sponding inference stages and Section 4 proceeds with the descrip-
tion of the respective DL-based approach.

3. RBM INFERENCE OF THE CLASS LABELS

The standard RBM is a network of binary, stochastic units, which
are organized in two layers, known as the “visible” and “hidden”
layers. To preserve the notation that is frequently used in the RBM
literature, let v = [v1, v2, . . . , vl+M] be the visible units and h =
[h1, h2, . . . , hK] the hidden units. Each visible unit corresponds to
a feature dimension and it is connected with all hidden units with
undirected weights (and vice versa) but there do not exist connec-
tions between units of the same layer.

3.1. Binary visible and hidden units

Let wij be the weight connecting vi with hj , ai the bias associated
with vi and bj the bias of node hj . The conditional probability,
p(hj = 1 | v), of turning “on” a hidden unit is

p(hj = 1 | v) = σ(bj +

l+M∑
i=1

viwij) (1)

where σ(x) is the logistic function, σ(x) = 1
1+exp(−x)

. Similarly,
the conditional probability, p(vi = 1 | h), of turning “on” a visible
unit is

p(vi = 1 | h) = σ(ai +

K∑
j=1

hjwij) (2)

The probability, p(v, h), of a joint configuration, (v, h), of visible
and hidden nodes, is p(v, h) = 1

Z
e−E(v,h), where E(v, h) is the

energy of the configuration,

E(v, h) = −
l+M∑
i=1

αivi −
K∑

j=1

βjhj −
l+M∑
i=1

K∑
j=1

vihjwij (3)

and Z is the partition function, Z =
∑

v,h e
−E(v,h).

Therefore, the probability, p(v), of a visible vector, is computed
by summing over all possible hidden vectors, p(v) =

∑
h p(v, h).

The training goal is to compute the weights that maximize, from
a maximum likelihood perspective, the log-likelihood, L(X), of the
training set, L(X) =

∑N
i=1 log p(x̄i).

To this end, each training pattern is “clamped” on the visible
nodes of the RBM and an approximation of the log-likelihood gra-
dient, known as Contrastive Divergence (CD) [18],[19] is used to
update the weights and biases of the RBM as follows:

∆wij =ε(〈vihj〉data − 〈vihj〉recon) (4)
∆bj =ε(〈hj〉data − 〈hj〉recon) (5)
∆ai =ε(〈vi〉data − 〈vi〉recon) (6)

where< . >data and< . >recon denote expectations over the train-
ing data and their reconstruction, respectively, and ε is the learning
rate (different learning rates can be adopted). The quantities in-
side the angular brackets can be approximated after a few cycles
of an alternating Gibbs sampling procedure [18], [19]. In practice,
we use the conditional probabilities, p(vi = 1 | h), in the place
of the vi s and we only sample from the conditional probabilities,
p(hj = 1 | v), during the Gibbs sampling operation. This modi-
fication permits to use patterns (feature vectors) whose elements lie
in the range [0, 1], as in the output of a softmax normalization pro-
cedure. Concerning the hidden nodes, sampling is performed by
comparing p(hj = 1 | v) with a number drawn in [0, 1] by a random
number generator.

3.2. Linear visible units and binary hidden units

As an alternative to a softmax preprocessing stage, the training data
can be normalized to zero mean and unit standard deviation per di-
mension. In this way, we can alternatively proceed to experimenting
with Gaussian visible units, i.e., linear, real-valued units that have
Gaussian noise [20], [21], [22]. The new energy function is

E(v, h) =

l+M∑
i=1

(vi − ai)2

2
+

K∑
j=1

bjhj −
∑
i,j

vihjwij (7)

and the conditional probability, p(vi | h), of a visible unit becomes:

p(vi | h) = N (ai +

K∑
j=1

hjwij , 1) (8)

where N (µ, 1) is the Gaussian distribution, with mean µ and unit
standard deviation. During the CD training algorithm, we avoid sam-
pling the Gaussian distribution of each visible unit and we simply let
the unit feed the hidden units with the total excitation that it has re-
ceived. On another (practical) matter, if Gaussian visible units are
used, it is preferable to use stretched codewords for the class labels
and keep the learning rate for weights and biases rather small, e.g.,
in the order of 0.001. This is because we want to reduce the risk
of the training algorithm to diverge due to the linear nature of the
visible units, which can receive unbounded input and do not pos-
sess a squashing function that is capable of bounding the output to a
predefined range of values.

3.3. Class label inference

After the RBM has been trained, the pattern to be classified is
“clamped” on the visible nodes, vi, i = 1, . . . , l, and the remaining
visible nodes, vi, i = l + 1, . . . , l + M are initialized with random
values, drawn from the interval [0, 1] for the case of binary units, and
the interval [−1,+1] for the case of linear units. Then an alternating
Gibbs sampling procedure starts. At each sampling cycle, we sam-
ple from the conditional probability of Eq. (1), which is computed
for each hidden node, and then compute the conditional probability

2027

of the visible nodes that correspond to the class label according to
Eq. (2) or (8) (depending on the type of visible nodes). The Gibbs
sampling procedure is repeated for several cycles (at least 100 in
our study). In the end, we observe the values of the conditional
probability at the visible nodes vi, i = l + 1, . . . , l + M and select
the maximum value which will (hopefully) be very close to one and
its position (index of visible node) will reveal the correct class.

4. DL RECONSTRUCTION OF THE CLASS LABELS

Dictionary learning (DL) is directly related to the sparse representa-
tion / sparse coding tasks. The objective of sparse coding is to choose
a few elementary signals / vectors, called atoms, drawn from a pre-
specified set of such signals, referred to as dictionary; this dictionary
provides a data-adaptive compact representation of the training data
set in terms of the atoms. Let D be a dictionary matrix comprising r
dictionary atoms, d1, · · · , dr as columns. A popular formulation of
the corresponding optimization task is described as follows [2], [3],
[23]:

min
D,B

‖X −DB‖2F , s.t. ‖bj‖0 ≤ k, j = 1 · · ·N, (9)

where X contains the training examples (xi, i = 1 . . . N) as
columns, ‖·‖F is the Frobenious norm, ‖·‖0 is the `0 pseudo-norm
counting the number of nonzero components of the unknown vec-
tor bj and k is the number of atoms, which are linearly combined
to represent the training examples. Moreover, a constraint on the
dictionary norm is necessary in order to avoid degenerate solutions,
with the unit-norm request for each atom being the most popular.

The dictionary is usually trained in an iterative fashion alternat-
ing two learning stages until convergence. In the first stage, the dic-
tionary D is fixed to its latest estimate and B is estimated, column
by column, via a series of sparse coding , i.e.

min
bj
‖xj −Dbj‖2 s.t. ‖bj‖0 ≤ k, j = 1 · · ·N (10)

In the second stage, the dictionary is updated whereas on the
same time either the full matrix B, or its zero entries only, are kept
fixed, depending on the specific DL method. One of the most popu-
lar and well-performing DL methods, the K-Singular Value Decom-
position (K-SVD), [23], updates the dictionary atom by atom via a
series of rank-1 approximations performed via truncated SVD.

The previously described methodology applies to a batch mode
of operation. According to this, the full amount of data is used at
each iteration of the algorithm, which is employed in the Dictio-
nary Learning task. Nevertheless, if one has at her/his disposal a
large amount of data, which is, for example, the case in Big Data
applications, batch operation might not be the most suitable choice,
as it requires huge computational and storage resources. Luckily
enough, in such cases, one can resort to the online learning philoso-
phy, e.g., [17]. In online learning algorithms, the data are processed
sequentially, one or more per iteration step, until a certain conver-
gence criterion is met. Online dictionary learning algorithms have
been proposed in the works [5, 24]. In the current study, for the
online dictionary learning task, we employ the algorithm of [5], re-
ferred here as Online Dictionary Learning (OnDiLe), since it has
been shown to enjoy performance, which is close to that of batch al-
gorithms. Without going into many details, the steps of the algorithm
can be summarized as follows. At each iteration of the algorithm,
one draws a certain number of training data, which is significantly
smaller than the total number in the available set, and it could possi-
bly be set equal to one (single data per iteration step). In the sequel,

the sparse coding vectors, corresponding to the drawn data, are com-
puted in a similar fashion as in Eq. (10) and finally, the dictionary is
updated, by employing the block–coordinate descent algorithm. It is
important to notice that, in contrast to batch processing, the sparse
coding vector computation and the dictionary update, when operat-
ing online, employ a significantly smaller subset of the training set
without big performance degradation, as it will become clear in the
Simulations section.

In pattern classification with label tagging, both batch and online
DL methods can be employed. Let X̄ ∈ Rl+M,N comprise the
training data expressed in the augmented feature space, i.e. after

the label tagging. This can be expressed as X̄ =

[
X
Y

]
. Any

dictionary learning method can be employed for the estimate of a
dictionary D, which sparsely represent the columns of X̄ with a
fixed and user defined sparsity level k. The dictionary D is naturally

split in two parts, D =

[
DX

DY

]
, with DX ∈ Rl,r being trained

to sparsely represent X and DY ∈ RM,r sparsely represents the
corresponding labels.

In the classification mode, an unlabeled vector a needs to be
classified. Considering the augmented counterpart of a, we write

ā =

[
a
ŷ

]
, where ŷ is the label, which needs to be estimated. Treat-

ing ŷ as missing data, its estimation can be realized in two steps.
First, the k-sparse representation of a is computed via

b̂ := min
b
‖a−DXb‖ s.t. ‖b‖0 ≤ k, (11)

and then, the label is estimated according to ŷ = DY b̂. A similar
approach is adopted in image impainting and audio imputation ap-
plications, when a dictionary, which sparsely represents the signal
under consideration, is known, e.g., [2], [25], [26].

5. AUDIO GENRE CLASSIFICATION

5.1. Audio corpus

Our study focuses on the Ballroom Dataset (BD) [27], a class-
imbalanced dataset that consists of 10 music classes: Cha Cha Cha,
Jive, Quickstep, three Rumba styles, Samba, Tango, Viennese Waltz
and Waltz. In the literature the three Rumba genres are usually
treated as one, giving rise to a 8-class (“merged”) problem. This
particular dataset was chosen because it defines a hard classification
task based on the results that have been reported over the last ten
years, since its inception in 2004. For each class, a varying number
of 30 s long audio segments are available, summing up to 698 clips.

5.2. Feature extraction

From each 30 s long audio segment we extract a number of rhythmic
signatures based on the feature extraction algorithm that was pro-
posed by one of the authors in [6]. The basic feature extraction steps
are summarized below:
1. The audio segment is divided into overlapping long-term windows
(10 s long, 9 s overlap).
2. At each long-term window, a short-term processing step extracts
a sequence, F = {f1, f2, . . . , fT }, of MFCC-like features.
3. The Averaged Magnitude Difference Function (AMDF), D, of
the short-term sequence, is then computed over a range of lags as
follows: D(k) = 1

T−k

∑T
i=k || fi − fi−k ||, k = 1, . . . , 800

The maximum lag is 800 which corresponds to a 4 s long rhythmic

2028

pattern assuming a 0.005 s long short-term processing step. Local
minima (valleys) of D indicate dominant signal periodicities.
4. The sharpness of the local minima of D is quantified. As a mea-
sure of sharpness, the second derivative, D2, of D is approximated.
Local maxima of D2 refer to audio periodicities (rhythmic events).
The resulting 800-dimensional feature vector is the rhythmic pattern,
x, which is augmented with the respective class label to produce x̄.

5.3. Training and testing datasets

A repeated random sub-sampling validation scheme is used. In par-
ticular, from each genre, 70% of the clips are randomly selected and
are inserted in the training set; the remaining ones (30%) are the
testing data. This process is repeated 5 times and the classification
accuracy is computed as the average over all 5 runs. The resulting
numbers of training and test patterns are ≈ 10k and ≈ 4.3k, respec-
tively.

Depending on the learning algorithm, a pattern normalization
step is required. We examine three normalization stages:
(a) Each feature dimension, xi, i = 1, 2, . . . , l, of the training set,
is normalized to zero mean and unit standard deviation. The mean
and standard deviation values which have been computed over the
training set are then used to normalize the respective testing dataset.
In this case, the codewords of the labels consist of values ±1.
(b) Each feature dimension of the training set is softmax normal-
ized in the range [0, 1].
(c) Each pattern in the training and testing datasets is individually
smoothed using a softmax squashing function. This is not a normal-
ization step in the strict sense, but again, it serves to map each pattern
element to the range [0, 1] [6].

Schemes (b) and (c) permit to assign a probabilistic interpreta-
tion to the generated features in the case of the RBM; values close to
1 indicate a higher probability that the respective lag (feature dimen-
sion) corresponds to a signal periodicity. In these two cases, we are
using binary codewords for the class labels. In the sequel, we will
refer to the three normalization algorithms with the abbreviations
Norm1, Norm2 and Norm3, respectively.

5.4. Performance evaluation

We present the classification accuracy for the 10-class task and the
“merged” classes scenario, both on a pattern and track level. The
former is only sparsely reported in the literature but it is very useful
when we deal with the problem of randomly selecting a pattern and
classifying it without taking into account all the classification deci-
sions from the same audio file. In our study, at the audio track level,
the classification decision is taken by simple majority voting. Table
1 presents a comparative study of well known algorithms in the liter-
ature with the algorithms in this paper. The classification accuracies
are the ones reported in the respective papers (first column).

For the RBM, we have experimented with a varying number of
hidden layer nodes, from 100 to 1000. It has turned out that there
only exists a small performance fluctuation (around 1.5%) and that
the best accuracy has been achieved around 300 hidden nodes, both
for binary and linear visible units and irrespective of the normaliza-
tion method that was used. In the DL case, several dictionary sizes
(500 - 2000) were tested together with different sparsity levels (1-5).
We did not observe significant performance fluctuations.

Furthermore, for the sake of comparison, we have reproduced
the method in [6], which was proposed by one of the authors and
was the best performing method in the MIREX-2013 competition
for the Latin Genre classification task (on a proprietary dataset). We
used a 3-layer network with binary stochastic units (with 500, 500
and 2000 hidden nodes at the three hidden layers, respectively). The

Method (with merged classes) Accuracy (% audio clips)
[9], [8], [28] 89.2, 86.9, 85.7

[10], [29], [11], [14] 79.6, 66.89± 5.26, 67, 65.1
[6] (Deep Network) 90.14

RBM-Norm3-f 86.6, 83.6 (10-class)
RBM-Norm2-f 85.2, 79.8 (10-class)
RBM-Norm1-f 86.4, 81.6 (10-class)

DL-KSVD-Sparsity-3-f 87.0, 83.0 (10-class)
DL-online-Sparsity-3-f 89.0, 82.2 (10-class)

Table 1. Method comparison on the Ballroom dataset. Boldface
entries correspond to the algorithms of this paper. The parentheses
indicate complementary performance on the 10-class task.

network was pre-trained in a layer-wise mode and fine-tuned with a
back-propagation algorithm.

Discussion: In this work we have only employed simple
rhythmic features without making any attempt for feature optimiza-
tion. In contrast, in most of the already reported results listed in Ta-
ble 1, elaborated features in the domains of timbre and rhythm have
been used, which are however hard to reproduce. Therefore, we ex-
pect further performance improvement if more complicated feature
extraction schemes are combined with the method proposed in this
paper. Moreover, it turns out that, DL methods give results compet-
itive to the best reported performance so far ([9] and [6]). Interest-
ingly, the online approach does not lead to any performance deterio-
ration compared to the batch mode of operation. However, it has to
be kept in mind that the task is a non-convex one and hence, the spe-
cific batch mode algorithm and the initial conditions may affect the
final solution. Despite this remark, this is still a notable advantage,
allowing to cope with online classification problems, where retrain-
ing from scratch is not necessary whenever new data become avail-
able. Moreover, storage of the full amount of training data is avoided
since the learning procedure can be realized on the fly. Concerning
the RBM architecture, it can be observed that it follows closely, de-
spite its simplicity and without having made any attempt for more
complicated RBM nodes and training approaches.

Finally, we present complementary classification results at the
pattern level, for the 10-class task. These task requirements have
not been systematically addressed in the literature. The respective
results are desirable in applications where isolated classification de-
cisions need to be computed over shorter time intervals (on a 10 s
basis in our study). The results of the proposed methods are as fol-
lows: 82.6% for the RBM architecture and 83% both for batch and
online DL implementations. The deep network architecture of [6]
performed better (84.8%). However, taking into account the com-
plexity and the computational demands of deep networks, along with
the fact that their architecture prohibits online mode of operation, we
conclude that the approach proposed here offers a very reasonable
trade off among complexity, accuracy and breadth of applicability,
even for the hard case of pattern level decisions in the 10-class case.

6. CONCLUSIONS

This paper approached the task pattern classification from a missing
data perspective and designed a family of algorithms based on RBMs
and Dictionary Learning techniques, which have proved to be com-
petitive on the hard task of audio genre classification in the context
of the publicly available Ballroom Dataset. Future research will in-
vestigate datasets from other research disciplines, will examine other
missing data algorithms and will delve deeper into the existing ap-
proach, especially in the case of online learning.

2029

7. REFERENCES

[1] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton,
“Restricted boltzmann machines for collaborative filtering,” in
Proceedings of the 24th ACM International Conference on Ma-
chine Learning (ICML), 2007, pp. 791–798.

[2] M. Elad, Sparse and Redundant Representations: From The-
ory to Applications in Signal and Image Processing, Springer,
2010.

[3] Sergios Theodoridis, Yannis Kopsinis, and Konstantinos
Slavakis, Sparsity-aware learning and compressed sensing:
An overview, Academic press, 2014.

[4] Geoffrey E Hinton, “To recognize shapes, first learn to gener-
ate images,” Progress in Brain Research, vol. 165, pp. 535–
547, 2007.

[5] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online learning for matrix factorization and sparse
coding,” The Journal of Machine Learning Research, vol. 11,
pp. 19–60, 2010.

[6] Aggelos Pikrakis, “A deep learning approach to rhythm mod-
eling with applications,” in Proceedings of the 6th Inter-
national Workshop on Machine Learning and Music (MML
2013), 2013.

[7] Andre Holzapfel and Yannis Stylianou, “Rhythmic similarity
of music based on dynamic periodicity warping,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2008, pp. 2217–2220.

[8] Andre Holzapfel and Yannis Stylianou, “A scale transform
based method for rhythmic similarity of music,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2009, pp. 317–320.

[9] Tim Pohle, Dominik Schnitzer, Markus Schedl, Peter Knees,
and Gerhard Widmer, “On rhythm and general music similar-
ity.,” in Proceedings of ISMIR, 2009, pp. 525–530.

[10] Fabien Gouyon, Simon Dixon, Elias Pampalk, and Gerhard
Widmer, “Evaluating rhythmic descriptors for musical genre
classification,” in Proceedings of the 25th AES International
Conference, 2004, pp. 196–204.

[11] Emiru Tsunoo, George Tzanetakis, Nobutaka Ono, and Shigeki
Sagayama, “Beyond timbral statistics: Improving music classi-
fication using percussive patterns and bass lines,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 1003–1014, 2011.

[12] Emiru Tsunoo, George Tzanetakis, Nobutaka Ono, and Shigeki
Sagayama, “Audio genre classification using percussive pat-
tern clustering combined with timbral features,” in IEEE Inter-
national Conference on Multimedia and Expo (ICME), 2009,
pp. 382–385.

[13] Klaus Seyerlehner, Markus Schedl, Reinhard Sonnleitner,
David Hauger, and Bogdan Ionescu, “From improved auto-
taggers to improved music similarity measures,” Adaptive Mul-
timedia Retrieval, 2012.

[14] Jan Schluter and Christian Osendorfer, “Music similarity es-
timation with the mean-covariance restricted boltzmann ma-
chine,” in 10th International Conference on Machine Learn-
ing and Applications and Workshops (ICMLA), 2011, vol. 2,
pp. 118–123.

[15] Klaus Seyerlehner, Gerhard Widmer, and Tim Pohle, “Fusing
block-level features for music similarity estimation,” in Pro-
ceedings of the 13th Int. Conference on Digital Audio Effects
(DAFx), 2010, pp. 225–232.

[16] Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and Yann
LeCun, “Unsupervised learning of sparse features for scalable
audio classification.,” in Proceedings of ISMIR, 2011, pp. 681–
686.

[17] Sergios Theodoridis, Machine Learning: A Bayesian and Op-
timization Perspective, Academic Press, 2015.

[18] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh, “A fast
learning algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[19] Yoshua Bengio, “Learning deep architectures for ai,” Foun-
dations and trends R© in Machine Learning, vol. 2, no. 1, pp.
1–127, 2009.

[20] Yoav Freund and David Haussler, Unsupervised learning of
distributions of binary vectors using two layer networks, Tech-
nical Report, UCSC-CRL-94-25, 1994.

[21] Tim K Marks and Javier R Movellan, “Diffusion networks,
product of experts, and factor analysis,” in International Con-
ference on Independent Component Analysis, 2001, pp. 481–
485.

[22] Graham W Taylor, Geoffrey E Hinton, and Sam T Roweis,
“Modeling human motion using binary latent variables,” in
Advances in Neural Information Processing Systems, 2006, pp.
1345–1352.

[23] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algo-
rithm for designing overcomplete dictionaries for sparse repre-
sentation,” IEEE Transactions on Signal Processing, vol. 54,
no. 11, pp. 4311–4322, Nov. 2006.

[24] Karl Skretting and Kjersti Engan, “Recursive least squares dic-
tionary learning algorithm,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 4, pp. 2121–2130, 2010.

[25] Jinyu Han, Gautham J Mysore, and Bryan Pardo, “Audio im-
putation using the non-negative hidden markov model,” in
Latent Variable Analysis and Signal Separation, pp. 347–355.
Springer, 2012.

[26] Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka,
“Missing data imputation for spectral audio signals,” in Proc.
of the IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), 2009, pp. 1–6.

[27] Fabien Gouyon, Anssi Klapuri, Simon Dixon, Miguel Alonso,
George Tzanetakis, Christian Uhle, and Pedro Cano, “An ex-
perimental comparison of audio tempo induction algorithms,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 14, no. 5, pp. 1832–1844, 2006.

[28] Jesper Højvang Jensen, Mads Græsbøll Christensen, and
Søren Holdt Jensen, “A tempo-insensitive representation of
rhythmic patterns,” in Proceedings of the 17th European Sig-
nal Processing Conference (EUSIPCO), 2009.

[29] Arthur Flexer, Fabien Gouyon, Simon Dixon, and Gerhard
Widmer, “Probabilistic combination of features for music clas-
sification.,” in Proceedings of ISMIR, 2006, pp. 111–114.

2030

