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ABSTRACT

In this paper, we propose a new consensus clustering algorithm,
which is based on an existing clustering paradigm, called enhanced
splitting merging awareness tactics (E-SMART). The problem of de-
termining the number of clusters, which affects many state-of-the-
art consensus clustering algorithms, is addressed by the proposed
CoCE-SMART algorithm. The idea behind CoCE-SMART is that
SMART is used repeatedly to one dataset, resulting in different clus-
tering results, which might have different numbers of clusters. These
SMART clustering results can be combined by clustering the cen-
troids of all clusters as the estimate of real number of clusters can be
determined from the SMART clustering results. Three benchmark
datasets are utilised to assess the proposed algorithm. The exper-
imental results strongly indicate that the proposed CoCE-SMART
algorithm outperforms other state-of-the-art consensus clustering al-
gorithms.

Index Terms— Consensus clustering, SMART, Gene expres-
sion analysis

1. INTRODUCTION

Clustering, or unsupervised learning, is one of fundamental prob-
lems in the machine learning field. The objective of clustering is
to group a set of unlabelled data objects into clusters, within which
similar objects are gathered. A number of industrial applications and
scientific research areas exploit clustering as an exploratory tool to
discover the structure in the unknown data, for example, data min-
ing, image segmentation, information retrieval, and gene expression
analysis [1–3]. Clustering is an extremely difficult problem because
of its unsupervised nature as well as the uncertainty of the data.
There have been many types of algorithms in the literature, trying
to solve the same problem from different perspectives, for exam-
ple, partitional clustering, hierarchical clustering, fuzzy clustering,
neural-network based clustering, model-based clustering, etc [4–7].
However, these algorithms often provide very different results and
no single algorithm is able to identify the structures of all sorts of
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data. Additionally, for some stochastic clustering algorithms, every
single run on the same dataset will produce different results.

Consensus clustering, also known as ensemble clustering or
cluster aggregation, is viewed as one of solutions to the above is-
sue [8–16]. Consensus clustering formalises the idea that combining
different clustering into a single representative or consensus, would
emphasise the common organisation in the different clustering re-
sults. The pioneering work of consensus clustering was done by
Fred and Jain [8, 10], who introduced the concept of evidence accu-
mulation clustering (EAC) that maps the individual data partitions
in a clustering ensemble into a new similarity measure between
patterns, summarizing common structure perceived from these clus-
terings. The EAC algorithm is based on the assumption that similar
data objects are more likely to be grouped into the same cluster than
dissimilar ones, and conversely, those data objects that are often
clustered in the same cluster should be regarded as being very simi-
lar. The EAC algorithm is designed to form a co-association matrix,
which summarises a clustering ensemble by counting the number of
co-occurrence between each pair of data objects. The co-association
matrix is then clustered by using agglomerative hierarchical cluster-
ing. Based on the EAC algorithm, Lourenco and colleagues further
developed probabilistic consensus clustering (PCC) [12]. Strehl and
Ghosh [9] proposed three different combination methods, namely
hypergraph-partitioning algorithm (HGPA), cluster-based similar-
ity partitioning algorithm (CSPA), and meta-clustering algorithm
(MCLA), exploring the concept of consensus between data parti-
tions. Basel and colleagues [13,14] proposed a consensus clustering
algorithm named binarisation of consensus partition matrix (BiCo-
PaM), which is based on relabelling and voting strategy. All the
above consensus clustering algorithms have their merits; however,
they have a common weakness, which is that they all require the
number of clusters as a parameter during clustering.

A common practice to tackle this problem is to estimate the
number of clusters before the clustering procedure. It can be done
by employing clustering validation criteria [17, 18]. However, most
clustering validation criteria have to search exhaustively a range of
numbers of clusters, with the hope that the real number of clusters is
within the range. Moreover, their ability of correctly determining the
number of clusters is limited in the noisy dataset [18]. Recently, A
new clustering paradigm, named splitting merging awareness tactics
(SMART), was proposed to cluster the dataset without specifying the
number of clusters a priori [19–21]. The principle of the SMART
algorithm relies on a splitting-while-merging (SWM) framework,
where clusters split and merge in the same time constantly until a
stopping criterion is satisfied. Later, the SMART algorithm was fur-
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Fig. 1: The structure of E-SMART

ther enhanced by employing successive processing, called enhanced
SMART (E-SMART) [22]. However, the issue in SMART and E-
SMART is that they are stochastic algorithms, which start randomly
and produce different results, sometimes with different numbers of
clusters, depending on the noise level in the data.

In this paper, we propose a new consensus clustering algorithm
based on the SMART paradigm, which is named CoCE-SMART,
to produce consistent and accurate clustering results. By exploiting
the greatest advantage of the SMART clustering, i.e. estimating the
number of clusters fairly accurately while clustering, the problem
of determining the number of clusters, which affects many state-of-
the-art consensus clustering algorithms, is addressed by the proposed
CoCE-SMART algorithm. The SMART algorithm, which starts ran-
domly from one or two clusters and ends up with a clustering with a
fairly accurate estimate of number of clusters, is used repeatedly to
cluster the given dataset. The SMART clustering results, therefore,
can be combined by grouping the centroids of all clusters as the es-
timate of real number of clusters can be obtained from the SMART
clustering results. Three benchmark datasets are utilised to assess
the proposed algorithm. The experimental results strongly indicate
that the proposed CoCE-SMART algorithm outperforms other state-
of-the-art consensus clustering algorithms on both accuracy and con-
sistency.

2. SMART AND ENHANCED SMART

We are able to review only briefly the principle of the SMART and E-
SMART algorithms here because of the limited space. The interested
readers are referred to references [19–22].

The SMART paradigm starts the clustering procedure with one
or two randomly generated clusters. Clusters that contain many dis-
tinct patterns split continuously and automatically; in the meanwhile,
clusters that meet the merging criterion are joined together. Such
a process enables SMART self-awareness to split and merge clus-
ters automatically in iterations. To do so, many clustering tasks
have to be performed. In the splitting task of each iteration (Task
2 in [19–21]), SMART splits one cluster into two. Then, the new
clusters are tested by a merging criterion which is called merging
task (Task 3 in [19–21]). If any pair of clusters meet the merg-
ing criterion, we merge the two clusters, otherwise skip the merg-
ing step. Then SMART goes through a termination-check, where a
stopping criterion is applied. If the condition for termination is not
satisfied, SMART goes to the next iteration and continues to split,
otherwise, SMART finishes SWM process. The last step is cluster-
ing selection task (Task 4 in [19–21]). Minimum message length
(MML) [23] was employed in clustering selection task. Note that
these tasks in the SWM strategy can be done using many differ-
ent clustering techniques, e.g., competitive learning paradigm was
used for the splitting task in [19] while component-wise expecta-
tion maximisation (CWEM) for finite mixture models (FMM) was
used for both splitting and merging tasks in [21]; in both original
SMART and SMART-FMM, MML was employed in clustering se-
lection task [19–21].

The SMART-FMM algorithm was enhanced by employing suc-
cessive processing strategy [22]. This was the first attempt in the
literature to employ successive processing in a clustering algorithm.
Instead of selecting the best clustering from the results by using clus-
tering selection criterion in original SMART framework, the succes-
sive processing strategy subtracted clusters one by one in iterations.
In doing so, the silhouette index was employed to evaluate the in-
termediate clusters and order them according to their index values
from high to low. Then the best cluster was subtracted from the
original dataset and the remaining dataset was fed back to the SWM
process to start a new iteration. The clustering and subtracting were
repeated successively and terminated automatically, once no more
splitting happened in the SWM process. The structure of E-SMART
is shown in Fig. 1. In this paper, we will employ E-SMART as the
main clustering algorithm.

3. COCE-SMART

Let the dataset that we are going to partition be X = {xi|1 ≤ i ≤
N}, where xi ∈ RM×1 denotes the i-th object,M is the dimension,
and N is the number of objects. Suppose that R partitions generated
by the E-SMART algorithm are denoted as P = {P 1,P 2, ...,PR}.
Since the E-SMART algorithm is a stochastic algorithm, the num-
ber of clusters in each partition may vary because of the noise, i.e.,
the numbers of clusters for R partitions can be denoted as K =
{K1,K2, ...,KR}. We can obtain Kr centroids as representatives
ofKr clusters from the r-th clustering results, and therefore, we can
obtain a new dataset containing all centroids, called centroids set,
with Nc =

∑R
r=1Kr centroids. We can also simply obtain the best

number of clusters Kbest as the mode of K. Note that since the
number of clusters has been given, any high-quality clustering algo-
rithm can be used to cluster the new centroids set further at this stage.
Here, we employ a model-based clustering algorithm [4]. Actually,
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such a re-clustering procedure is indeed a relabelling process. All
clusters from different clustering partitions are relabelled into new
partition labels in terms of the partition of the centroids set. Then we
can generate a consensus partition matrix C ∈ Z+

N×Kbest , whose
element cnk denotes the number of times that the n-th data object
is assigned the k-th cluster. Once the consensus partition matrix is
produced, we can either obtain the final partition by assigning the
objects to the clusters that they are mostly clustered into, or send
the consensus partition matrix into a BiCoPaM framework [13] to
obtain different levels of tightness of clusters. The proposed CoCE-
SMART algorithm, whose structure is shown in Fig. 2, can be sum-
marised as follows:

1. To generate R clustering results by using the E-SMART al-
gorithm;

2. To form a new set (centroids set) containing all centroids of
clusters in all generated clustering results;

3. To estimate the number of clusters based on the generated
clustering results;

4. To cluster the centroids set using the model-based clustering
algorithm with the estimated number of clusters; and

5. To generate a consensus partition matrix based on the cluster-
ing of the centroids set.

4. EXPERIMENTAL RESULTS

4.1. Datasets and Experiments Set-up

In this paper, we compare the proposed CoCE-SMART algorithm
with several state-of-the-art consensus clustering algorithms, namely
HGPA, CSPA, MCLA [9], PCC [12], BiCoPaM-kmeans (BK), and
BiCoPaM-hybrid (BH) [13]. We investigate performance of accu-
racy and reducibility of each algorithm. The metrics measuring ac-
curacy are adjusted Rand index (ARI) [24] when the ground truth
is available. Silhoutte index (SI) [25] and Calinski-Harabasz (CH)
index [26] will be used to evaluate the quality of clusterings when
the ground truth is not available. To measure the reproducibility of
the consensus clustering algorithms, we repeat the experiment many
times, i.e. Ne. We define an average value of pair-wise ARI between
any two experiment results as a metric to measure the reproducibility
(REP), which can be mathematically expressed as

REP =

∑Ne
i=1

∑Ne
j=1,j 6=i ARI(P i,P j)

Ne(Ne − 1)
, REP ∈ (−1, 1]. (1)

Table 1: Performance comparison of CoCE-SMART with other
state-of-the-art algorithms, namely BK, BH [13], PCC [12], CSPA,
HGPA, MCLA [9] in Iris flower dataset. Both mean and standard
deviation of performance metrics are investigated.

Known Unknown
ARI REP ARI REP

BK 0.73±1.1E-15 1.0±0.0 0.54±6.7E-16 1.0±0.0
BH 0.74±7.0E-3 0.99±1.0E-2 0.54±1.2E-15 1.0±0.0
PCC 0.55±7.1E-2 0.82±1.4E-1 0.57±7.6E-2 0.76±1.5E-1
CSPA 0.91±8.7E-2 0.95±1.3E-1 0.28±2.4E-2 0.54±7.4E-2
HGPA 0.92±1.7E-2 0.98±2.0E-2 0.32±2.1E-2 0.67±8.7E-2
MCLA 0.91±9.5E-2 0.94±1.4E-1 0.50±7.3E-2 0.76±0.1
CoCE-SMART - - 0.92±1.0E-15 1.0±0.0

We use three benchmark experiments to evaluate the perfor-
mance of the CoCE-SMART algorithm and those compared algo-
rithms. The first experiment use the Iris flower dataset, which is a
collected multivariate dataset of three types (k = 3) of Iris flowers
for a total of N = 150 data objects with M = 4 measured features
(attributes) each [27]. The second experiment employs a mathemati-
cal model to simulate the periodic behaviour of yeast cell cycle gene
expression [28]. The model of cyclic gene expression is given by

xij(p, q) = γ+(l+pγ) · [γ+(l+pγ]) sin(2πj/8−ωi+qγ)] (2)

where xij is the expression value of the i-th gene at the j-th time
point, each instant of γ is an independent random number from the
standard normal distribution N (0, 1), the parameter l controls the
magnitude of the sinusoid and it is fixed to three here. The parameter
p controls the random component added to the magnitude and the
parameter q controls the random component added to the phase. The
parameter ωi is the phase shift of the i-th gene and will determine
which cluster the gene will be in. Since the noise in this model is not
additive, we have to couple p and q to be a pair, and raise both their
values to change the noise power. We simulate three scenarios with
three levels of noise, where (p, q) are (0.7, 0.07) (low), (1.3, 0.13)
(medium), and (1.9, 0.19) (high) respectively. The third experiment
employs real microarray yeast cell cycle α-38 dataset provided by
Pramila and colleagues [29]. It consists of 500 genes with highest
periodicity scores and each gene has 25 time samples. Additionally,
their peaking times as percentages of the cell cycle have also been
provided by Pramila and colleagues [29]. It is widely accepted that
there are four phases in the cell cycle, namely, G1, S, G2 and M
phases [29].

For HGPA, CSPA, MCLA, PCC, and BK algorithms, we em-
ploy k-means randomly initialised as the clustering algorithm. Each
of these algorithms combine R = 100 partitions. BH employs k-
means with Kauffman approach (KA) initialisation, self-organising
map (SOM), hierarchical clustering average linkage, complete link-
age and Ward linkage [6], R = 5 clustering algorithms. We also
notice that all compared algorithms require the number of clusters
as an input parameter, however, such information is not available a
priori. For a fair comparison, for each compared algorithm, we in-
vestigate performance for both perfectly known number of clusters
and estimated number of clusters using CH. All above algorithms
in all datasets with known and unknown number of clusters are re-
peated Ne = 100 times.

4.2. Results

In the first place, we investigate the Iris flower dataset. Both accu-
racy and reproducibility performance comparison of CoCE-SMART
with other state-of-the-art algorithms, namely BK, BH, PCC, CSPA,
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Table 2: Performance comparison of CoCE-SMART with other
state-of-the-art algorithms in synthetic cell cycle gene expression
dataset with low noise.

Known Unknown
ARI REP ARI REP

BK 1.0±5.0E-4 1.0±7.4E-4 0.83±1.9E-1 0.81±1.9E-1
BH 1.0±1.2E-3 1.0±1.7E-3 1.0±8.9E-3 1.0±3.5E-3
PCC 1.0±7.1E-4 1.0±9.9E-4 0.87±8.4E-2 0.78±9.7E-2
CSPA 0.99±5.0E-2 0.98±6.8E-2 0.33±7.8E-3 0.18±8.6E-3
HGPA 1.0±5.0E-4 1.0±7.0E-4 0.38±1.3E-2 0.23±1.0E-2
MCLA 1.0±5.0E-4 1.0±7.0E-4 0.63±1.0E-1 0.47±1.1E-1
CoCE-SMART - - 1.0±1.2E-3 1.0±1.7E-3

Table 3: Performance comparison of CoCE-SMART with other
state-of-the-art algorithms in synthetic cell cycle gene expression
dataset with medium noise.

Known Unknown
ARI REP ARI REP

BK 1.0±3.3E-3 1.0±4.6-3 0.54±9.8E-2 0.69±1.8E-1
BH 1.0±5.8E-3 0.99±8.1E-3 0.45±1.1E-1 0.83±1.8E-1
PCC 1.0±3.4E-3 0.99±4.8E-3 0.83±1.1E-1 0.7±1.2E-1
CSPA 0.99±2.4E-2 0.99±3.4E-2 0.33±1.1E-2 0.19±1.0E-2
HGPA 1.0±3.6E-3 0.99±5.0E-3 0.37±1.7E-2 0.22±1.2E-2
MCLA 1.0±3.3E-3 0.99±4.6E-3 0.55±1.1E-1 0.38±9.7E-2
CoCE-SMART - - 1.0±7.5E-3 0.99±1.1E-2

HGPA, MCLA, is shown in Table 1. The results reveal that all state-
of-the-art algorithms work well with perfectly known number of
clusters, while work poorly without predetermined number of clus-
ters, except PCC, which works poorly in both scenarios. Among
them, CSPA, HGPA, and MCLA provide best performance, with ac-
ceptably high accuracy, only when number of clusters is known. We
may note that their standard deviation of the REP performance is
relatively high, which means that they are less stable than BK. Com-
pared with these state-of-the-art algorithms, the proposed CoCE-
SMART algorithm provide performance with high mean values and
low standard deviation values in both accuracy and reproducibility
measures without the need of specifying the number clusters.

In the second experiments, we test the proposed CoCE-SMART
algorithm in synthetic cell cycle gene expression datasets with dif-
ferent noise levels. The performance of investigated algorithms in
these three scenarios, i.e. low, medium, and high noise, is shown in
Table 2, Table 3, and Table 4 respectively. Interestingly, all state-of-
the-art algorithms perform very well in all three noise levels when
the number of clusters is perfectly known. However, when the num-
ber of clusters is unknown, only BH produces good performance in
the low noise scenario, and degrades rapidly when the noise goes
high. Other state-of-the-art algorithms cannot provide acceptable
performance in all three scenarios when the number of clusters is
unknown, which emphasizes that the number of clusters is critical
to the clustering algorithms. The results indicate that the proposed
CoCE-SMART algorithm is able to produce high quality clustering
results consistently, even in the environments with high noise, with-
out the number of clusters as a parameter.

In the last experiment, we evaluate all algorithms in the real gene
expression dataset, i.e. Yeast cell cycle α-38 dataset. The perfor-
mance comparison is shown in Table 5. Since the ground truth is not
available in this case, we employ SI and CH to evaluate the accuracy
of algorithms. Consistent to the previous two experiments, all state-
of-the-art algorithms work well in terms of their SI and CH perfor-
mance when the number of clusters is set, where BK and BH provide
the clustering results with the highest SI and CH performance, while
they are more consistent than other algorithms. However, when the
number of clusters is unknown, their performance drops dramati-
cally. The proposed CoCE-SMART algorithm is supported by the

Table 4: Performance comparison of CoCE-SMART with other
state-of-the-art algorithms in synthetic cell cycle gene expression
dataset with high noise.

Known Unknown
ARI REP ARI REP

BK 0.97±1.2E-2 0.95±1.6E-2 0.36±1.0E-2 0.76±0.2
BH 0.93±2.4E-2 0.86±3.0E-2 0.37±3.3E-2 0.78±0.2
PCC 0.97±1.3E-2 0.94±1.7E-2 0.79±1.3E-1 0.64±1.4E-1
CSPA 0.97±1.3E-2 0.95±1.7E-2 0.32±1.3E-2 0.18±1.0E-2
HGPA 0.97±1.7E-2 0.93±2.3E-2 0.35±1.8E-2 0.20±1.2E-2
MCLA 0.97±1.5E-2 0.94±1.9E-2 0.46±8.0E-2 0.30±5.8E-1
CoCE-SMART - - 0.97±4.4E-2 0.91±5.8E-2

Table 5: Performance comparison of CoCE-SMART with other
state-of-the-art algorithms in Yeast cell cycle α-38 dataset.

Known Unknown

BK
SI 0.41±7.3E-16 0.29±1.8E-3

CH 7.0±3.9E-15 5.7±7.0E-3
REP 1.0±0.0 0.98±4.1E-2

BH
SI 0.42±8.2E-3 0.26±3.3E-2
CH 7.0±2.2E-1 5.2±3.3E-1
REP 0.88±8.9E-2 0.78±1.3E-1

PCC
SI 0.29±3.3E-2 0.26±2.6E-2
CH 5.6±4.8E-1 4.8±4.1E-1
REP 0.77±1.3E-1 0.78±9.9E-2

CSPA
SI 0.27±8.9E-3 0.12±1.3E-2
CH 5.5±2.4E-1 2.4±1.2E-1
REP 0.74±2.1E-1 0.60±6.9E-2

HGPA
SI 0.28±3.5E-2 0.05±2.7E-2
CH 5.6±5.6E-1 2.0±1.3E-1
REP 0.59±1.5E-1 0.36±4.1E-2

MCLA
SI 0.31±1.2E-2 0.18±2.7E-2
CH 5.8±2.9E-1 2.6±1.3E-1
REP 0.65±1.6E-1 0.61±5.2E-2

CoCE-SMART
SI - 0.40±1.6E-3
CH - 6.9±2.2E-2
REP - 0.96±3.2

results that it provides higher quality and more reliable clustering
results more consistently than other state-of-the-art algorithms, es-
pecially when the number of clusters is not available.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, we proposed a consensus clustering algorithm based
on E-SMART (CoCE-SMART). SMART is an existing clustering
paradigm, which is able to split and merge clusters automatically to
reach a high quality clustering results without specifying the num-
ber of clusters a priori. E-SMART is an enhanced version employ-
ing successive processing. The problem of determining the number
of clusters, which affects many state-of-the-art consensus clustering
algorithms, was addressed by the CoCE-SMART algorithm. The
idea behind CoCE-SMART is that SMART is used repeatedly to one
dataset, resulting different clustering results, which might have dif-
ferent numbers of clusters. These SMART clustering results, there-
fore, can be combined simply by grouping the centroids of all clus-
ters as the estimate of real number of clusters can be determined
easily.

Three benchmark datasets, including Iris flower dataset, syn-
thetic cell cycle gene expression datasets, and real microarray
Yeast cell cycle dataset, were investigated to assess the proposed
algorithm. We measured both accuracy and reproducibility perfor-
mance of CoCE-SMART and many other state-of-the-art algorithms,
namely BK, BH [13], PCC [12], CSPA, HGPA, MCLA [9]. The
experimental results strongly indicate that the proposed CoCE-
SMART algorithm outperforms other state-of-the-art consensus
clustering algorithms, especially when the number of clusters is not
available.
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