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‡Northwestern Polytechnical University, Xi’an, China

gao wei@mail.nwpu.edu.cn dr.jie.chen@ieee.org cedric.richard@unice.fr j.bermudez@ieee.org jghuang@nwpu.edu.cn

ABSTRACT

Complex kernel-based adaptive algorithms have been recently intro-
duced for complex-valued nonlinear system identification. These al-
gorithms are built upon the same framework as complex linear adap-
tive filtering techniques and Wirtinger’s calculus in complex repro-
ducing kernel Hilbert spaces. In this paper, we study the conver-
gence behavior of the augmented complex Gaussian KLMS algo-
rithm. Simulation results illustrate the accuracy of the analysis.

Index Terms— Kernel adaptive filtering, complex RKHS, com-
plex Gaussian kernel, non-circular data

1. INTRODUCTION

Single-kernel adaptive filters have been extensively studied over the
last decade, and their performance have been investigated experi-
mentally and theoretically on a variety of real-valued nonlinear sys-
tem identification problems. Typical filtering algorithms in repro-
ducing kernel Hilbert spaces (RKHS) are the KRLS algorithm [1],
the sliding-window KRLS algorithm [2], and the quantized KRLS
algorithm [3]. The KNLMS algorithm was independently introduced
in [4–7]. The KLMS algorithm, proposed in [8, 9], has attracted
much attention in recent years because of its simplicity and robust-
ness. An analysis of its convergence behavior with Gaussian kernel
is reported in [10], and a closed-form condition for convergence is
introduced in [11]. The stability of this algorithm with `1-norm reg-
ularization is studied in [12, 13].

Kernel-based adaptive filtering algorithms for complex data
have recently attracted attention since they ensure phase processing.
This is of importance for applications in communication, radar and
sonar. A complexified kernel LMS algorithm and pure complex
kernel LMS algorithm are introduced in [14]. A direct extension of
the derivations in [10] is proposed in [15] to analyze the convergence
behavior of complex KLMS algorithm (CKLMS). The augmented
CKLMS algorithm (ACKLMS) is presented in [16, 17], and its nor-
malized counterpart is described in [18, 19]. These works show
that augmented complex-valued algorithms provide significantly
improved performance compared with complex-valued algorithms.
Finally, the quaternion KLMS algorithm has been recently intro-
duced in [20] as an extension of complex-valued KLMS algorithms.

The aim of this paper is to analyze the convergence behavior of
the ACKLMS algorithm. First, we introduce some definitions and
a general framework for pure complex multikernel adaptive filter-
ing algorithms. This framework relies on multikernel adaptive fil-
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ters that has previously been derived for use with real-valued data
in [21–24]. Then, we derive models for the convergence behavior
in the mean and mean-square sense of the ACKLMS algorithm with
Gaussian kernels. Finally, the accuracy of these models is checked
with simulation results.

2. COMPLEX MULTI-KERNEL LMS

2.1. Preliminaries

Consider the complex input/output sequence {(u(n), d(n))}Nn=1

with u(n) ∈ U and d(n) ∈ C, where U is a compact of CL. The
complex input vector can be expressed in the form

u(n) =
√

1− ρ2 ure(n) + iρuim(n)

= uI(n) + iuQ(n)
(1)

where the subscripts I and Q denote “in-phase” and “quadrature”
components, and i =

√
−1. The sequence ure(n) (resp., uim(n)) is

supposed to be zero-mean, independent, and identically distributed
according to a real-valued Gaussian distribution. The entries of each
input vector ure(n) (resp., uim(n)) can, however, be correlated. In
addition, the sequences ure(n) and uim(n) are assumed to be inde-
pendent. This implies that E{u(n− i)uH(n− j)} = 0 for i 6= j,
where the operator (·)H denotes Hermitian transpose. The circular-
ity of input data is controlled by parameter ρ. Setting ρ =

√
2/2

results in a circular input, while ρ approaching to 0 or 1 leads to a
highly non-circular input.

Let κC : U × U → C be a complex reproducing kernel. We
denote by (H, 〈·, ·〉H) the induced complex RKHS with its inner
product. Complex reproducing kernels include the Szego kernel, the
Bergman kernel, and the so-called pure complex Gaussian kernel.
The latter is the extension of the Gaussian kernel for complex argu-
ments. The pure complex Gaussian kernel is defined as follows [25]

κC(u,v) = exp

(
−

L∑
`=1

(u` − v∗` )
2
/2ξ2

)
(2)

with u` and v` the `-th entries of u,v ∈ CL. The parameter ξ > 0
denotes the kernel bandwidth and (·)∗ denotes the conjugate opera-
tor. The conjugate of kernel κC(u,v) is defined by

κ?C(u,v) = exp

(
−

L∑
`=1

(v` − u∗` )
2
/2ξ2

)
. (3)

Note that (·)? is defined on kernels and should not be confounded
with the complex conjugate (·)∗. We shall focus on the above com-
plex Gaussian kernel in the sequel.
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2.2. A framework for complex multi-kernel algorithms

Let {κC,k}Kk=1 be the family of candidate complex kernels, and Hk
the RKHS defined by each κC,k. Consider the space H of multidi-
mensional mappings

Φ : C→ CK

u 7→ Φ(u) = col{ϕ1(u), . . . , ϕK(u)}
(4)

with ϕk ∈ Hk and col{·} the operator that stacks its arguments on
top of each other. Let 〈·,·〉H be the inner product in H defined as

〈Φ,Φ′〉H =
∑K
k=1
〈ϕk, ϕ′k〉Hk . (5)

The space H equipped with the inner product 〈·,·〉H is a Hilbert space
as (Hk, 〈·,·〉Hk ) is a complex Hilbert space for all k. We can then
define the vector-valued representer of evaluation κH(·,u) such that

Φ(u) = [Φ,κH(·,u)] (6)

with κH(·,u) = col{κC,1(·,u), . . . , κC,K(·,u)} and [·,·] the entry-
wise inner product. This yields the following reproducing property

κH(u,v) = [κH(·,u),κH(·,v)]. (7)

Let Ψ = col{ψ1, . . . , ψK} be a vector-valued function in space H,
and let ψ =

∑K
k=1 ψk with ψk ∈ Hk be the scalar-valued function

that sums the entries of Ψ, namely, ψ = 1>KΨ with 1K the all-one
column vector of length K.

Given a valued input-output sequence {(d(n),u(n))}Nn=1, we
aim at estimating a multidimensional function Ψ in H that minimizes
the regularized least-square error

min
Ψ∈H

J(Ψ) =

N∑
n=1

∣∣d(n)− 1>KΨ(u(n))
∣∣2 + λ‖1>KΨ‖2H (8)

with λ ≥ 0 a regularization constant. By virtue of the generalized
multidimensional representer theorem, not presented in this paper
due to lack of space, the optimum function Ψ can be written as

Ψ(·) = col
{ N∑
n=1

α∗n,k κC,k(·,u(n))
}K
k=1

. (9)

For simplicity, without loss of generality, we shall omit the regular-
ization term in problem (8), which can be reformulated as

min
α
J(α) =

N∑
n=1

∣∣d(n)−
K∑
k=1

αHk κC,k(n)
∣∣2 (10)

where α = col{α1, . . . ,αK} with αk = (α1,k, . . . , αN,k)> is the
unknown weight vector, and κC,k(n) is the N × 1 kernelized input
vector with j-th entry κC,k(u(j),u(n)). Calculating the directional
derivative of J(α) with respect to α by Wirtinger’s calculus yields

∂αkJ(α) = −2

N∑
n=1

e∗(n)κC,k(·,u(n)). (11)

where e(n) = d(n) −
∑K
k=1α

H
k κC,k(n). Approximating (11) by

its instantaneous estimate ∂αkJ(α) ≈ −2 e∗(n)κC,k(·,u(n)), we
obtain the stochastic gradient descent algorithm:

α(n+ 1) = α(n) + η e∗(n)κH(n) =

n∑
i=1

η e∗(i)κH(i) (12)

with η a positive step-size, κH(n) = col{κC,k(n)}Kk=1 the com-
plex kernelized input vector, and e(n) = d(n)− αH(n)κH(n) the
estimation error. Finally, the optimal function is of the form

ψ(·) =

N∑
n=1

K∑
k=1

α∗n,k κC,k(·,u(n)). (13)

2.3. Augmented complex kernel LMS (ACKLMS)

In order to overcome the problem of the increasing amount n of ob-
servations in an online context, a fixed-size model is usually adopted:

ψ(·) =

M∑
m=1

K∑
k=1

α∗m,k κC,k(·,u(ωm)) (14)

where ω , {κH(·,u(ωm))}Mm=1 is the so-called dictionary of the
filter ψ, and M its length. Limiting the number of single-kernel fil-
ters to K = 2, and setting the two kernels to (2)-(3), the ACKLMS
algorithm based on model (14) is given by (See [18] for an introduc-
tion to ACKLMS):

d̂(n) =

M∑
m=1

[
α∗1,m(n)κC(u(n),u(ωm))

+ α∗2,m(n)κ?C(u(n),u(ωm))
]

= αH(n)κH,ω(n).

(15)

The ACKLMS algorithm can be viewed as a complex Gaussian bi-
kernel case of the complex multi-kernel algorithm [18,19]. It can be
expected that ACKLMS algorithm outperforms the existing CKLMS
algorithms due to the flexibility of complex multi-kernels.

3. ACKLMS PERFORMANCE ANALYSIS

We shall now study the transient and steady-state of the mean-
square error conditionally to dictionary ω of the complex Gaussian
bi-kernel LMS algorithm, that is,

E
{
|e(n)|2 |ω

}
=

∫
U×C
|e(n)|2 dρ(u(n), d(n) |ω), (16)

with e(n) = d(n) − d̂(n) and ρ a Borel probability measure. We
shall use the subscript ω for quantities conditioned on dictionary ω.
Given ω, the estimation error at time instant n is given by

eω(n) = d(n)− d̂ω(n) (17)

with d̂ω(n) = d̂(n)|ω. Multiplying eω(n) by its conjugate and
taking the expected value yields the mean-square-error (MSE)

JMSE,ω = E{|d(n)|2}

− 2 Re
(
pHκd,ωαω(n)

)
+αHω (n)Rκ,ωαω(n)

(18)

withRκ,ω = E
{
κH,ω(n)κHH,ω(n)|ω

}
the correlation matrix of in-

put data, and pκd,ω = E {κH,ω(n)d∗(n)|ω} the cross-correlation
vector between κH,ω(n) and d(n). AsRκ,ω is positive definite, the
optimum weight vector is given by

αopt,ω = arg min
αω

JMSE,ω(αω) = R−1
κ,ω pκd,ω (19)

and the minimum MSE is

Jmin,ω = E
{
|d(n)|2

}
− pHκd,ωR

−1
κ,ω pκd,ω. (20)
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3.1. Mean weight error analysis

The weight update of the ACKLMS algorithm is given by

αω(n+ 1) = αω(n) + η e∗ω(n)κH,ω(n). (21)

Let vω(n) be the weight error vector defined as

vω(n) = αω(n)−αopt,ω. (22)

The weight error vector update equation is then given by

vω(n+ 1) = vω(n) + η e∗ω(n)κH,ω(n). (23)

The error (17) is consequently rewritten as

eω(n) = d(n)− κHH,ω(n)vω(n)− κHH,ω(n)αopt,ω. (24)

Substituting (24) into (23) yields

vω(n+ 1) = vω(n) + η
(
d∗(n)κH,ω(n) (25)

− κHH,ω(n)vω(n)κH,ω(n)− κHH,ω(n)αopt,ωκH,ω(n)
)
.

Taking expected value of (25), using the CMIA hypothesis intro-
duced in [26], and (19), we get the mean weight error model:

E {vω(n+ 1)} = (I − ηRκ,ω)E {vω(n)} . (26)

The (i, j)-th entry of matrixRκ,ω is given by

[Rκ,ω]i,j = E {κH(u(n),u(ωi)) [κH(u(n),u(ωj))]
∗} (27)

with the complex Gaussian bi-kernel κH(u(n),u(ωm)) given by

κH(u(n),u(ωm)) =

{
κC(u(n),u(ωm)), 1 ≤ m ≤M
κ?C(u(n),u(ωm)), M + 1 ≤ m ≤ 2M

Let us define a new vector that separates the real and imaginary
parts of u(n) such that ũ(n) = col{uI(n),uQ(n)} ∈ IR2L. With
the Gaussian kernels (2)-(3), the expected value of (27) can be ob-
tained by making use of the moment generating function in [26]. We
get (28) where δm is the indicator function

δm =

{
1, 1 ≤ m ≤M
−1, M + 1 ≤ m ≤ 2M

(29)

and Rũ = E{ũ(n) ũ>(n)}. The definition of H(i, j) in (28) de-
pends on i and j as follows:

H(i, j)=

(
I O
O −I

)
, 1 ≤ i, j ≤M and M + 1 ≤ i, j ≤ 2M

H(i, j)=

(
I 1i I

1i I −I

)
, 1 ≤ i ≤M and M + 1 ≤ j ≤ 2M

H(i, j) =

(
I −1i I
−1i I −I

)
, 1 ≤ j ≤M and M + 1 ≤ i ≤ 2M

Vector b in (28) is given by

b =


−
∑

s={i,j}

uI(ωs) + 1i[δi uQ(ωi)− δj uQ(ωj)]

−
∑

s={i,j}

uQ(ωs) + 1i[−δi uI(ωi) + δj uI(ωj)]

 . (30)

Equation (26) leads to the following theorem (without proof due to
lack of space):

Theorem 3.1 (Stability in the mean) Assume CMIA introduced
in [26] holds. Then, for any initial condition, given a dictionary ω,
the Gaussian ACKLMS algorithm (21) asymptotically converges in
mean if the step size is chosen to satisfy

0 < η < 2/λmax(Rκ,ω) (31)

where λmax(·) denotes the maximum eigenvalue of its matrix argu-
ment. The entries ofRκ,ω are given by (28).

3.2. Mean-square error analysis

Using (24) and CMIA, MSE is related to the second-order moment
of the weight vector by [10]

JMSE,ω(n) = Jmin,ω + trace {Rκ,ωCv,ω(n)} (32)

where Cv,ω(n) = E
{
vω(n)vHω (n)

}
is the autocorrelation matrix

of the weight error vector vω(n), and Jmin,ω is the minimum MSE
given by (20). The analysis of the MSE behavior (32) requires a
recursive model forCv,ω(n). Post-multiplying (25) by its Hermitian
conjugate, taking the expected value, and using CMIA, we get the
following recursion for sufficiently small step sizes

Cv,ω(n+ 1) ≈ Cv,ω(n)

− η [Rκ,ωCv,ω(n) +Cv,ω(n)Rκ,ω]

+ η2 T ω(n) + η2Rκ,ωJmin,ω

(33)

with

T ω(n)

= E
{
κH,ω(n)κHH,ω(n)vω(n)vHω (n)κH,ω(n)κHH,ω(n)

}
.

(34)

Evaluating (34) is a significant step in the analysis sinceκH,ω(n) is a
nonlinear transformation of a quadratic form of u(n). Using CMIA
to determine the (i, j)-th element of T ω(n) in (34) yields

[T ω(n)]i,j ≈
M∑
`=1

M∑
p=1

E{κH(u(n),u(ωi)) [κH(u(n),u(ωj))]
∗

× κH(u(n),u(ω`)) [κH(u(n),u(ωp))]
∗} · [Cv,ω(n)]`,p. (35)

This expression can be written as

[T ω(n)]i,j ≈ trace {Kω(i, j)Cv,ω(n)} (36)

where the (`, p)-th entry of the matrixKω(i, j) is given by

[Kω(i, j)]`,p = E{κH(u(n),u(ωi)) [κH(u(n),u(ωj))]
∗

× κH(u(n),u(ω`)) [κH(u(n),u(ωp))]
∗} . (37)

Similarly, we also rewrite (37) in terms of vector ũ(n) and use the
moment generating function [26]. This leads to (38)-(39). The defi-
nition of L(i, j) in (38) depends on i and j as follows:

L(i, j) =

(
2I O
O −2I

)


1 ≤ i, j, `, p ≤M

1 ≤ i, j ≤M ;M + 1 ≤ `, p ≤ 2M

1 ≤ `, p ≤M ;M + 1 ≤ i, j ≤ 2M

1 ≤ i, ` ≤M ;M + 1 ≤ j, p ≤ 2M

1 ≤ j, p ≤M ;M + 1 ≤ i, ` ≤ 2M

M + 1 ≤ i, j, `, p ≤ 2M

L(i, j) =

(
2I 1i I
1i I −2I

) 
1 ≤ j ≤M ;M + 1 ≤ i, `, p ≤ 2M

1 ≤ ` ≤M ;M + 1 ≤ i, j, p ≤ 2M

1 ≤ j, `, p ≤M ;M + 1 ≤ i ≤ 2M

1 ≤ i, j, ` ≤M ;M + 1 ≤ p ≤ 2M
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[Rκ,ω]i,j =
∣∣I +

2

ξ2
H(i, j)Rũ

∣∣− 1
2 · exp

(
− 1

2ξ2
[
∑
s={i,j}‖uI(ωs)‖

2 −
∑
s={i,j}‖uQ(ωs)‖2]

)
× exp

(
1i

ξ2
[δi u

>
I (ωi)uQ(ωi)− δj u>I (ωj)uQ(ωj)]

)
· exp

(
1

2ξ4
b>Rũ(I +

2

ξ2
H(i, j)Rũ)−1 b

) (28)

[Kω(i, j)]`,p=
∣∣I +

2

ξ2
L(i, j)Rũ

∣∣− 1
2 exp

(
1i

ξ2
[δi u

>
I (ωi)uQ(ωi)−δj u>I (ωj)uQ(ωj)+δ` u

>
I (ω`)uQ(ω`)−δp u>I (ωp)uQ(ωp)]

)
× exp

(
− 1

2ξ2
(
∑
s={i,j,`,p}‖uI(ωs)‖

2 −
∑
s={i,j,`,p}‖uQ(ωs)‖2)

)
· exp

(
1

2ξ4
f>Rũ(I +

2

ξ2
L(i, j)Rũ)−1 f

) (38)

f =

(
−
∑
s={i,j,`,p}uI(ωs) + 1i [δi uQ(ωi)− δj uQ(ωj) + δ` uQ(ω`)− δp uQ(ωp)]

−
∑
s={i,j,`,p}uQ(ωs) + 1i [−δi uI(ωi) + δj uI(ωj)− δ` uI(ω`) + δp uI(ωp)]

)
(39)

L(i, j) =

(
2I −1i I
−1i I −2I

) 
1 ≤ i ≤M ;M + 1 ≤ j, `, p ≤ 2M

1 ≤ p ≤M ;M + 1 ≤ i, j, ` ≤ 2M

1 ≤ i, `, p ≤M ;M + 1 ≤ j ≤ 2M

1 ≤ i, j, p ≤M ;M + 1 ≤ ` ≤ 2M

L(i, j) =

(
2I 2i I
2i I −2I

)
1 ≤ j, ` ≤M ;M + 1 ≤ i, p ≤ 2M

L(i, j) =

(
2I −2i I
−2i I −2I

)
1 ≤ i, p ≤M ;M +1 ≤ j, ` ≤ 2M

3.3. Steady-State behavior

In order to determine the steady-state of recursion (33), we rewrite it
in a lexicographic form. Let vec {·} denote the operator that stacks
the columns of a matrix on top of each other. Vectorizing Cv,ω(n)
and Rκ,ω by cv,ω(n) = vec {Cv,ω(n)} and rκ,ω = vec {Rκ,ω},
we can rewrite (33) as follows

cv,ω(n) = Gω cv,ω(n) + η2 Jmin,ω rκ,ω (41)

with Gω = I − η(Gω,1 +Gω,2) + η2Gω,3. Matrix Gω is found
by the use of the following definitions:

• I is the identity matrix of dimension 4M2 × 4M2;

• Gω,1 = I ⊗Rκ,ω , where ⊗ denotes the Kronecker product;

• Gω,2 = Rκ,ω ⊗ I;

• Gω,3 is given by [Gω,3]i+2(j−1)M,`+2(p−1)M = [Kω(i, j)]`,p
with 1 ≤ i, j, `, p ≤ 2M .

Assuming convergence, the closed-formed solution of the recur-
sion (41) in steady-state is given by

cv,ω(∞) = η2 Jmin,ω(I −Gω)−1rκ,ω. (42)

From equation (32), the steady-state MSE is finally given by

JMSE,ω(∞) = Jmin,ω + trace {Rκ,ωCv,ω(∞)} (43)

where the second term on the right side is the steady-state EMSE.

4. EXPERIMENT

This section provides an example of nonlinear system identification
to check the accuracy of the convergence models. We considered the
complex valued input sequence

u(n) = ρ0 u(n− 1) + σu

√
1− ρ2

0 w(n) (44)

with w(n) =
√

1− ρ2 wre(n) + i ρwim(n). Parameter ρ was set
to 0.1 corresponding to highly non-circular, and the random vari-
ables wre(n) and wim(n) were distributed according zero-mean i.i.d.

Gaussian distributions with standard deviation σw = 1. Both pa-
rameters ρ0 and σu were set to 0.5. The system to be identified was{
y(n) = (0.5− 0.1i)u(n)− (0.3− 0.2i)u(n− 1)

d(n) = y(n) + (1.25− 1i) y2(n) + (0.35− 0.2i) y3(n) + z(n)

where z(n) is a complex additive zero-mean Gaussian noise with
standard deviation σz = 0.1. At each time n, ACKLMS algorithm
was updated with input vector u(n) = [u(n), u(n − 1)]> and the
reference signal d(n). The correlation matrixRũ is thus given by

Rũ = σ2
u


(1− ρ2) (1− ρ2)ρ0 0 0

(1− ρ2)ρ0 (1− ρ2) 0 0
0 0 ρ2 ρ2ρ0

0 0 ρ2ρ0 ρ2

 . (45)

The pure complex Gaussian bandwidth ξ and the step-size η were set
to 0.55 and 0.1, respectively. We used the coherence sparsification
criterion proposed in [5] with threshold µ0 = 0.3 to construct a fixed
dictionary of length M = 12. All simulation curves were obtained
by averaging over 200 Monte Carlo runs. It is shown in Figure 1
that the theoretical curves consistently agree with the Monte Carlo
simulations in both transient and steady-state.
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Fig. 1. Simulation results of ACKLMS algorithm.

5. CONCLUSION

In this paper, we presented the ACKLMS algorithm based on the
framework of complex multi-kernel. Then we derived a theoretical
model of convergence for ACKLMS with pre-tuned dictionary. In
future works, we will study how using this model to design dictio-
naries, and set the step-size and the kernel bandwidth, that allow to
reach specified MSE or convergence speed.
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