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ABSTRACT

This paper presents a stochastic behavior analysis of a kernel-based
stochastic restricted-gradient descent method. The restricted gradi-
ent gives a steepest ascent direction within the so-called dictionary

subspace. The analysis provides the transient and steady state perfor-
mance in the mean squared error criterion. It also includes stability
conditions in the mean and mean-square sense. The present study
is based on the analysis of the kernel normalized least mean square
(KNLMS) algorithm initially proposed by Chen et al. Simulation
results validate the analysis.

Index Terms— kernel adaptive filter, reproducing kernel Hilbert
space, the KLMS algorithm, performance analysis

1. INTRODUCTION

Kernel adaptive filtering [1] is an attractive approach for nonlin-
ear estimation problems based on the theory of reproducing kernel
Hilbert space (RKHS), and a number of kernel adaptive filtering
algorithms have been proposed [2–8]. The existing kernel adap-
tive filtering algorithms are classified into two general categories
according to the space in which optimization is performed [6]: (i)
the functional-space approach (e.g., [2, 5, 7]) and (ii) the parameter-
space approach (e.g., [4, 6, 9]). The kernel normalized least mean
square (KNLMS) algorithm is a representative example of the
parameter-space approach and its stochastic behavior analyses have
been presented in [10–12]. The analyses have clarified the transient
and steady-state performance in the mean squared error (MSE).
A stochastic restricted-gradient descent algorithm studied in the
present work is a functional-space counterpart of the KNLMS algo-
rithm. We call it the constrained kernel least mean square (CKLMS)
algorithm to distinguish it from the KLMS algorithm proposed in
[13]. A primitive question is whether it is possible to give the same
analyses as in [10–12] for the stochastic restricted-gradient descent
algorithm. If this is possible, it will provide a theoretical basis
to compare the performances of KNLMS and CKLMS. This will
eventually give a new insight into the relationship between the two

classes of kernel adaptive filtering algorithms.

To clarify the orientation of the CKLMS algorithm in the ker-

nel adaptive filtering researches, let us give a short note on the
functional-space approach. Dictionary sparsification is a common
issue of kernel adaptive filtering [1, 3, 4, 14]. The KLMS algorithm
[13] updates the filter only when the current input datum is added
into the dictionary and this would cause severe performance degra-
dations. A systematic scheme which eliminates such a limitation
has been proposed in [15] under the name of hyperplane projection

along affine subspace (HYPASS). The HYPASS algorithm updates
the filter using the projection onto the zero-instantaneous-error hy-
perplane along the so-called dictionary subspace M, the subspace
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spanned by the dictionary elements. This is achieved by project-
ing the gradient direction onto M. In a nutshell, HYPASS is the
NLMS algorithm operated in the dictionary subspaceM. CKLMS
is actually an LMS counterpart of HYPASS and we consider this
LMS-based algorithm to make the analysis feasible. In [16] and [7],
the mean square convergence analysis and the theoretical steady-
state MSE have been presented for the KLMS and Quantized KLMS
algorithms, respectively. However, transient performance analy-
ses have not yet been reported due to the difficulty in treating the
growing number of dictionary elements.

In this paper, we present a stochastic behavior analysis of the
CKLMS algorithm with a Gaussian kernel under i.i.d. random in-
puts based on the framework presented in [12]. CKLMS is derived
by using the restricted gradient which gives a steepest ascent di-
rection within the dictionary subspace M. The analysis provides
theoretical MSEs during the transient phase as well as at the steady-
state. We also derive stability conditions in the mean and mean-
square sense. The key ingredients for the analysis are the restricted
gradient and the isomorphism between the dictionary subspace M
and a Euclidean space; these were also the key when the first and
second authors developed a sparse version of HYPASS in [17]. The
validity of the analysis is illustrated by simulations.

2. PRELIMINARIES

We address an adaptive estimation problem of a nonlinear system
ψ with sequentially arriving input signals u ∈ U ⊂ IRL, and
its noisy output d := ψ(u) + ν ∈ IR, where u is assumed an
i.i.d. random vector and ν is a zero-mean additive noise uncorre-
lated with any other signals. The function ψ is modeled as an ele-
ment of the RKHSH associated with a Gaussian kernel κ(x,y) :=

exp

(

−‖x− y‖2
2σ2

)

, x,y ∈ U , where σ > 0 is the kernel param-

eter. We denote by 〈·, ·〉 and ‖·‖ the canonical inner product and the

norm defined in IRL, respectively, and 〈·, ·〉H and ‖·‖H those in H.
A kernel adaptive filter is given as a finite order filter:

ϕn :=
∑

j∈J

α
(n)
j κ(·,uj), n ∈ N, (1)

where α
(n)
j ∈ IR are the filter coefficients andJ := {j1, j2, · · · , jr}

indicates the dictionary {κ(·,uj)}j∈J ; n is the time index. With-
out loss of generality, we assume that the dictionary is a linearly
independent set so that it spans an r dimensional subspace

M := span{κ(·,uj)}j∈J ⊂ H, (2)

which is called the dictionary subspace. Although the dictionary is
updated typically during the learning process, we assume that the
dictionary is fixed to make the analysis tractable.

2001978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



The instantaneous error at time instant n is defined as en :=
dn − 〈ϕ, κ(·,un)〉H = dn − 〈α,κn〉, where κn = [κ(un,uj1),

κ(un,uj2), · · · , κ(un,ujr )]
T is the vector of the kernelized input

and α = [αj1 , αj2 , · · · , αjr ]
T is the coefficient vector. The MSE

cost function, with respect to the coefficient vector α, is given by

J(α) := E(e2n(α)) = E(d2n) +α
T
Rκα− 2pT

α, (3)

where Rκ := E(κnκ
T

n) is the autocorrelation matrix of the ker-
nelized input κn and p := E(dnκn) is the cross-correlation vector
between κn and dn. With the optimization in RKHS in mind, the
MSE, with respect to ϕ, is given by:

J(ϕ) := E(e2n(ϕ)) =E(d2n) +E(〈ϕ, κ(·,un)〉2H)

− 2E(dn 〈ϕ, κ(·,un)〉H). (4)

While the KNLMS algorithm optimizes J(α) in the Euclidean

space IRL, the constrained KLMS algorithm presented in the fol-
lowing section optimizes J(ϕ) in the RKHSH under the restriction
to the dictionary subspaceM, or in short, it optimizes J(ϕ) inM.
Referring to [2], the stochastic gradient descent method for J(ϕ) in
H updates the filter ϕn along the ‘line’ (one dimensional subspace)
spanned by the singleton {κ(·,un)}. This implies that the filter is
updated only when κ(·,un) is added into the dictionary, because
otherwise ϕn +ακ(·,un) 6∈ M for any α 6= 0. We thus present the
restricted gradient, which was initially introduced in [17], and derive
the constrained KLMS algorithm in the following section.

3. THE CONSTRAINED KLMS ALGORITHM

The ordinary gradient of J(α) in IRr is given by ∇J(α) =
2(Rκα − p). Given any positive definite matrix Q, 〈x,y〉

Q
:=

xTQy and ‖x‖
Q

:=
√

xTQx define an inner product and its
induced norm, respectively. The G-gradient of (3) with the inner
product 〈·, ·〉

G
is defined as [17]

∇GJ(α) := G
−1∇J(α), (5)

where [G]ℓ,m = κ(ujℓ ,ujm ) for 1 ≤ ℓ,m ≤ r is the Gram ma-

trix.1

The functional Hilbert space
(

M, 〈·, ·〉H
)

of dimension r is iso-

morphic to the Hilbert space
(

IRr, 〈·, ·〉G
)

under the correspondence
(see Fig. 1)

M ∋ ϕ :=
∑

j∈J

αjκ(·,uj)←→ α := [αj1 , · · · , αjr ]
T ∈ IRr. (6)

Note here that the isomorphism as Hilbert spaces includes, in ad-
dition to the one-to-one correspondence between the elements, the
preservation of the inner product; i.e., 〈ϕ1, ϕ2〉H = 〈α1,α2〉G for
any ϕ1 ←→ α1 and ϕ2 ←→ α2. Under the correspondence in (6),
the restricted gradient ∇|MJ(ϕ) is defined, through the G-gradient

in IRL, as follows [17]:

∇|MJ(ϕ)←→ ∇GJ(α) = G
−1∇J(α). (7)

The restricted gradient ∇|MJ(ϕ) gives the steepest ascent direc-
tion, within the dictionary subspace M, of the tangent plane of
the functional (4) at the point ϕ. See the derivation of the re-
stricted gradient in [17]. An instantaneous approximation of the

1The Gram matrix G is ensured to be positive definite due to the assump-
tion that the elements of the dictionary are linearly independent. The defini-
tion of the G-gradient is validated by observing that 〈β −α,∇GJ(α)〉G+

J(α) = 〈β −α,∇J(α)〉+ J(α) ≤ J(β) for any β ∈ IRL.

ϕ =
∑

j∈J αjκ(·,uj) α = [αj1 , αj2 , · · · , αjr ]
T

∇|MJ(ϕ)

M IRr

∇GJ(α) := G−1∇J(α)

Fig. 1. The isomorphism between IRr and M and the restricted
gradient.

restricted gradient ∇|MJ(ϕn) ←→ ∇GJ(αn), where αn :=

[α
(n)
j1
, α

(n)
j2
, · · · , α(n)

jr
]T ∈ IRr is given by ∇̃|MJ(ϕn) ←→

∇̃GJ(αn) := G−1∇̃J(αn) := 2G−1(κnκ
T

nαn − dnκn) =
−2enG−1κn. Hence, for the initial vector α0 := 0, the stochastic
restricted-gradient descent method, which we call the constrained

KLMS (CKLMS) algorithm, is given by

αn+1 := αn− η
2
∇̃GJ(αn) = αn+ηenG

−1
κn, n ∈ N, (8)

where η > 0 is the step size. The CKLMS algorithm (8) requires r2

complexity for each time update, and this would make a significant
impact on the overall complexity of the algorithm. In [15, 18], a sim-
ple selective-updating idea for complexity reduction without serious
performance degradations has been presented; it will be shown in
Section 5 that the selective-updating works well. We finally remark
that the metric G is naturally derived from the inner product 〈·, ·〉H
in the functional space H.

4. PERFORMANCE ANALYSIS

4.1. Key idea and assumption

We derive a theoretical MSE and stability conditions for CKLMS
given by (8) with Gaussian kernel, given the dictionary {κ(·,uj)}j∈J .

Left-multiplying both-sides of (8) by the square root G
1

2 of G
yields2

α̃n+1 = α̃n + ηenκ̃n, (9)

where κ̃n = G− 1

2 κn, α̃n = G
1

2αn. The cost function J(α) in
(3) can be rewritten by

(J(α) =) J̃(α̃) = E(d2n) + α̃
T
R̃κα̃− 2p̃T

α̃, (10)

as a function of α̃ := G
1

2 α, and (9) can be regarded as a stochastic

gradient descent method for this cost function J̃(α̃). Here

R̃κ := E(κ̃nκ̃
T

n) = G
− 1

2RκG
− 1

2 , (11)

and

p̃ := E(dnκ̃n) = G
− 1

2 p, (12)

are the autocorrelation matrix and the cross-correlation vector for the
modified vector κ̃n, respectively.

As R̃κ is positive definite provided that Rκ is non-singular, the
optimum weight vector is given by

α̃
∗ := R̃

−1
κ p̃, (13)

and with α̃∗, we define the weight error vector

ṽn := α̃n − α̃
∗. (14)

2For any positive semi-definite matrix Q, there exists a unique square root

Q
1

2 satisfying Q = Q
1

2 Q
1

2 .
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In the present analysis, κ̃nκ̃
T

n needs to be independent of ṽn, which
is guaranteed by making the following conditioned modified inde-
pendence assumption (CMIA) [12].

Assumption 1 κnκ
T

n is independent of vn(= G− 1

2 ṽn).

4.2. Mean weight error analysis

The estimation error can be expressed by

en = dn − κ̃
T

nṽn − κ̃
T

nα̃
∗. (15)

Substituting (15) to (9), we obtain the recursive expression for ṽn:

ṽn+1 = ṽn + ηdnκ̃n − ηκ̃T

nṽnκ̃n − ηκ̃T

nα̃
∗
κ̃n. (16)

Using CMIA, we obtain the mean weight error model

E(ṽn+1) = (Ir − ηR̃κ)E(ṽn), (17)

where Ir denotes the r × r identity matrix for any positive integer
r. Let the input un be a random vector following a Gaussian distri-
bution with zero mean and the covariance matrix Ru := E(unu

T

n).
Then, the (ℓ,m) component (1 ≤ ℓ,m ≤ r) of the autocorrelation
matrix Rκ of κn is given by [12]:

[Rκ]ℓ,m = |IL +
2

σ2
Ru|−

1

2

exp

[

− 1

4σ2

(

2 ‖ūℓm‖(2) − ‖ūℓm‖2(
IL+σ2

2
R

−1

u

)

−1

)]

,

where ūℓm = ujℓ + ujm , ‖ūℓm‖(2) = ‖ujℓ‖2 + ‖ujm‖2, and |·|
stands for determinant.

From the recursion in (17), we obtain the mean stability condi-
tion of CKLMS as follows.

Theorem 1 (Stability in the mean) Assume CMIA holds. Then, for

any initial condition, given dictionary {κ(·,uj)}j∈J , the CKLMS

algorithm asymptotically converges in the mean if the step size is

chosen to satisfy

0 < η <
2

λmax(R̃κ)
, (18)

where λmax(·) denotes the maximum eigenvalue of the matrix.

Proof: It is clear from the well-known mean stability results (see,
e.g., [19]).

4.3. Mean-square error analysis

Squaring (15) and taking its expectation under CMIA, the MSE (10)
of CKLMS can be rewritten as

J̃(α̃n) = Jmin + tr(R̃κC̃n), (19)

where C̃n := E(ṽnṽ
T

n) is the correlation matrix of ṽn and Jmin :=

E(d2n) − p̃TR̃
−1
κ p̃ is the minimum MSE. We assume that e∗n :=

dn − κ̃T

nh̃
∗

and κ̃nκ̃
T

n are uncorrelated and that E(e∗n) ≈ 0. Fol-
lowing the arguments in [10, Section III. D] with κω and v replaced
respectively by κ̃ and ṽ, we arrive, with simple manipulations, at the

following recursion:

C̃n+1 ≈ C̃n + η2(T̃ n + JminR̃κ)− η(R̃κC̃n + C̃nR̃κ), (20)

where T̃ n := E(κ̃nκ̃
T

nṽnṽ
T

nκ̃nκ̃
T

n) and its (ℓ,m) component can
be approximated as

[T̃ n]ℓ,m ≈ tr(S̃ℓ,mC̃n), 1 ≤ ℓ,m ≤ r. (21)

Here, the (p, q) component (1 ≤ p, q ≤ r) of S̃ℓ,m is defined as

[S̃ℓ,m]p,q := E(κ̃n,ℓκ̃n,mκ̃n,pκ̃n,q) = g
T

ℓHm,p gq , (22)

where κ̃n,ℓ := [κ̃n]ℓ, gℓ (1 ≤ ℓ ≤ r) is the ℓ-th column vector of

G− 1

2 , and Hm,p := E(κnκ
T

ngmgT

pκnκ
T

n). The approximation in
(21) can be developed by following the arguments in [12, Section
3.3] with κω and vω replaced by κ̃ and ṽ, respectively. Finally, the
(i, j) component of Hm,p can be written as

[Hm,p]i,j = g
T

mSi,jgp, 1 ≤ i, j ≤ r, (23)

where [Si,j ]s,t := E(κn,iκn,jκn,sκn,t), 1 ≤ s, t ≤ r, with
κn,i := κ(un,uji) can be computed by [12, Eq. (35)].

Let us now establish the mean-square stability condition and de-

rive the steady-state MSE. Due to the presence of R̃κC̃n + C̃nR̃κ

in (20), we exploit the lexicographic representation of C̃n, i.e, the
columns of each matrix are stacked on top of each other into a vector.
The recursion (20) can be rewritten as

c̃n+1 = Kc̃n + η2Jminr̃κ, (24)

where c̃n and r̃κ are the lexicographic forms of C̃n and R̃κ, respec-
tively, and

K := Ir2 − η(K1 +K2) + η2K3, (25)

where K1 := Ir ⊗ R̃κ, K2 := R̃κ ⊗ Ir , and K3 is an r2 × r2
matrix entries are: [K3]ℓ+(m−1)r,p+(q−1)r := [S̃ℓ,m]p,qwith 1 ≤
ℓ,m, p, q ≤ r. Here, ⊗ denotes the Kronecker product. By (24) and
(25), we obtain the following results.

Theorem 2 (Mean-square stability) Assume CMIA holds. For any

initial conditions and the step size η satisfying (18), given a dictio-

nary {κ(·,uj)}j∈J , the CKLMS algorithm with Gaussian kernel is

mean-square stable, if the matrix K is stable (i.e., the spectral ra-

dius of K is less than one).

Proof: The algorithm is said to be mean-square stable if, and only if,
the state vector remains bounded and tends to a steady-state value,
regardless of the initial condition [19]. To complete the proof, it is
sufficient to show that ‖ṽn‖2 remains bounded and tends to a steady-
state value. This is verified by the fact that c̃n is bounded and tends
to a steady-state value if the matrix K is stable. ✷

Theorem 3 (MSE in the steady state) Assume that the step size η
satisfies (18) and the matrix K is stable. The steady-state MSE is

given by (19) with the lexicographic representation of C̃∞ given by

c̃∞ = η2Jmin(Ir2 −K)−1
r̃κ. (26)

Proof: Letting c̃n+1 = c̃n in (24) and rearranging the equation, we
obtain (26). ✷

5. SIMULATION RESULTS

We shall compare simulated learning curves and analytic models to
validate the analysis. We conduct two experiments under the same
settings as in [12]. In the first experiment, the input sequence is
generated by

un := ρun−1 + σu

√

1− ρ2ωn, (27)

where ωn is the noise following the i.i.d standard normal distribu-
tion. The nonlinear system is defined as follows:

{

xn := 0.5un − 0.3un−1

dn := xn − 0.5x2
n + 0.1x3

n + νn,
(28)
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Fig. 2. Simulation results of the first experiment.

Table 1. Computational complexity of the CKLMS algorithm.

Selective update (L+ sn + 1)r +O(s3n)
Full update (L+ r + 2)r

where νn is an additive zero-mean Gaussian noise with the standard
deviation σν = 0.05. The input vector is un = [un un−1]

T. The
step size, the standard deviation of the input, the input correlation
parameter, the kernel parameter and the dictionary size are set to
η = 0.075, σu = 0.5, ρ = 0.5, σ = 0.7 and r = 25, respectively.
The dictionary is r samples on a uniform grid defined on [−1, 1] ×
[−1, 1].

Fig. 2(a) depicts the results: the learning curves, the theoretical
transient MSE curve, and the theoretical steady state MSE line are
presented in blue, red, and green (dotted line), respectively. The
simulated curve is obtained by averaging over 1000 Monte-Carlo

runs. The theoretical MSE is estimated by (19) with C̃n recursively
evaluated by (20). The steady state MSE is computed by Theorem
3. Although the input is correlated, the theoretical MSE presented in
this paper well represents the behavior of CKLMS.

In the second experiment, the fluid-flow control problem is con-
sidered [20]:











xn := 0.1044un + 0.0883un−1

+1.4138xn−1 − 0.6065xn−2

dn := 0.3163xn/
√
0.1 + 0.9x2

n + νn,

(29)

where the input un is generated again by (27) with σu = 0.5 and
ρ = 0.5, and the standard deviation of the additive Gaussian noise
νn is set to σν = 0.05. The kernel parameter is set to σ = 0.75.
The input vector is un = [un un−1]

T. 31 dictionary elements are
selected from the inputs un based on the coherence criterion [4] in
advance. The step size is set to η = 0.01. The simulated curves are
obtained by averaging over 1000 Monte-Carlo runs, and the same
theoretical model as the first experiment is used. Fig 3(a) depicts the
results. Again, the simulation results show the validity of the anal-
ysis. Table 1 summarizes the overall per-iteration complexity (the

0 2000 4000 6000

10
-2

 

 

M
S

E

Iteration number

Theoretical steady state MSE

Simulated curve

Theoretical transient MSE

(a)

0 1000 2000 3000 4000 5000 6000 7000

10
-2

 

 

M
S

E

Iteration number

Selective update

Full update

(b)

Fig. 3. Simulation results of the second experiment.
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number of real multiplications) of CKLMS with full update and se-
lective update (see [15, 18]), and Fig. 4 illustrates the complexity as
a function of the dictionary size r for L = 2 and sn = 1; O(s3n) is
counted simply as s3n. Here, sn = 1 means that only one coefficient
is updated at each iteration and hence the complexity is reduced dras-
tically. Fig 2(b) and 3(b) depict the MSE learning curves of CKLMS
with full update and selective update for sn = 1. It can be seen that
CKLMS with the selective update exhibits a steady-state MSE com-
parable to the full-update case with drastically lower complexity.

6. CONCLUSION

This paper presented a stochastic behavior analysis of the CKLMS
algorithm which is a stochastic restricted-gradient descent method.
The analysis provided a transient and steady-state MSEs of the algo-
rithm. We also derived stability conditions in the mean and mean-
square sense. Simulation results showed that the theoretical MSE
curves given by the analysis well meet the simulated MSE curves.
The outcomes of this study will serve as a theoretical basis to com-
pare the performances of KNLMS and CKLMS.
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