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ABSTRACT

We are concerned with the so-called fingerprinting method for
WiFi-based indoor positioning, where the measured received signal
strength index (RSSI) is compared with training data to comeup
with an estimate of the user’s location. We introduce a method for
adapting the trained models to the statistics of the RSSI values of the
target (testing) WiFi device, which is derived from the Maximum
Likelihood Linear Regression (MLLR) framework. By introducing
regression classes the assumption of a linear relationshipbetween
the RSSI readings of the testing device and the training datais
relaxed, leading to superior adaptation performance. Parameter
adaptation formulas are derived for the general case of censored
and dropped data. While censoring occurs due to the limited sensi-
tivity of WiFi chips, dropping is probably caused by limitations of
the operating system of the portable devices. Experiments both on
simulated and real-world data demonstrate the effectiveness of the
proposed algorithms.

Index Terms— Indoor positioning, signal strength, censored
data, expectation maximization, maximum likelihood linear regres-
sion

1. INTRODUCTION

Due to the unavailability of GPS, accurate indoor positioning re-
mains a challenging task. Many algorithms have been proposed,
such as lateration based, angulation based and fingerprinting based
techniques using radio signals, such as Ultra-Wideband, ZigBee,
Bluetooth Low Energy or WiFi, often in combination with ac-
celerometer and magnetometer measurements, see e.g. [1, 2,3, 4].

However, due to multipath propagation, missing line-of-sight,
unsynchronized clocks etc., lateration and angulation based tech-
niques seem to be unsuitable for low-cost positioning systems. As a
result the fingerprinting method, which has been pioneered in [2], is
of particular interest, where in an offline (training) phasethe read-
ings of the RSSI of access points (APs) measured at the possible tar-
get positions are gathered, and the measurements during theonline
(classification) phase are compared to these training data to come up
with a decision on the user’s location. WiFi fingerprinting has found
widespread use due to the availability of the infrastructure and the
ubiquity of WiFi in portable devices, such as laptops, smartphones
etc..

Accurate positioning based on RF signal strength faces also
many challenges. It is well known that the WiFi scan results can
vary greatly, depending on the number of people in the vicinity, the
orientation of the device, and many more factors. To overcome these
variations, refined statistical models and classification rules have
been developed [4, 5, 6].

It was also found that WiFi chips exhibit a limited sensitivity and
that RSSI values below the reception threshold (e.g.,−100 dBm)
are censored, i.e., can be thought of being clipped to that minimum
value. In [5] we have proposed an Expectation Maximization (EM)
algorithm to estimate the parameters of such censored Gaussian data.
In this way one was able to exploit the location information that
is given by the fact that some APs are partly ’inaudible’ at certain
locations while they are not at other positions.

In [7] it was pointed out that differences in RSSI readings are
not only caused by environmental and propagation factors, but that
they are also caused by different hardware, i.e., differentchipsets
or antennas. The authors observed differences as high as−30 dBm
between chipsets of different vendors and up to−20 dBm among
chipsets of the same vendor, and even devices using the same chipset
could show significantly different RSSI readings.

This and the so-called drop-out problem mentioned in [7] we
also experienced in our own investigations. The latter refers to the
fact that occasionally RSSI readings of supposedly strong enough
access points were not reported by the software. A closer look at this
phenomenon revealed that the drop-out rate increased with the num-
ber of access points: if more than 20 APs were above the reception
threshold, the drop-out rate rose to about 20%, with a tendency to in-
crease to up to 40% for more than 40 audible APs. With the ubiquity
of WiFi, such large numbers of APs are not unrealistic. Drop-outs
will also occur if the APs temporarily switch off for energy-saving
purpose. We conjecture that the dropping phenomenon is caused by
limitations of the operating system of the portable devices, such as
limited buffer sizes or time-outs, and the operation of the WLAN
system.

In this paper we propose algorithms to counteract the negative
effects of drop-outs and differences in hardware variations on the
positioning accuracy. We will extend the EM algorithm for the esti-
mation of the parameters of a Gaussian in the presence of censored
data that was presented in [5] to the case of random dropping of
measurements at an unknown dropping rate. Furthermore, an adap-
tation algorithm will be proposed that adapts the parameters of the
trained models to the statistics of the RSSI measurements ofthe tar-
get testing device. Compared to the calibration method proposed in
[8], where a linear relationship was assumed between the RSSI read-
ings of the training and the target device, that was learnt bya Least
Squares approach, we relax the linearity assumption by clustering
user positions in multiple regression classes that share the same lin-
ear relationship, however different from the other clusters. We also
investigate the benefits from adapting the variances, in addition to
the means of the training models. The parameters of the transfor-
mations are learnt as to maximize the likelihood of the adaptation
data, adopting a very successful approach to speaker adaptation in
automatic speech recognition, known as Maximum LikelihoodLin-
ear Regression (MLLR) [9, 10, 11].
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2. PARAMETER ESTIMATION AND CLASSIFICATION IN
THE PRESENCE OF CENSORED AND DROPPED DATA

2.1. Parameter Estimation

In [5], an EM algorithm has been derived for estimating the param-
eters of censored Gaussian data. In this paper we extend the model
to consider the presence of dropped data in the measurements, see
Fig. 1.

xnyn
max(yn, c)

∼ N (µ, σ2)

c

dn

dn = 0

dn = 1

Dropping Censoring

Fig. 1. Measurement model.

Here, the hidden variablesdn, n = 1, . . . N , indicate whether
an observation is dropped (dn = 1) or not (dn = 0), whereπ =
P (dn = 1) is called thedropping rate in the following. The vari-
ables are gathered in the binary vectord = [d1, . . . , dN ], whereN
is the number of measurements. Further, definey = [y1, ..., yN ],
where theyn are i.i.d. with Gaussian probability density function
(PDF)pY (yn) = N (yn;µ, σ

2) if dn = 0, andyn = c if dn = 1,
where we setc to the smallest measurable RSSI value (e.g.,c =
−100 dBm). Observable are the censored datax = x1, ..., xN ,
wherexn = max(yn, c), with the censoring thresholdc as above.

Notice the difference between censoring and drop-outs: Even if
the parameters of the Gaussian are such that practically no censoring
occurs (becauseµ− 3σ > c), drop-outs will still occur!

Our goal is to estimate the parametersθ = {µ, σ2, π}. This
will be achieved by the Expectation Maximization (EM) algorithm,
where the hidden variables are{y,d} and the observable are{x}.
Noting thatxn does not convey more information aboutθ thanyn,
the expected log-likelihood of the complete data, given theobserved,
is given by:

Q(θ; θ(κ)) = E[ln[p(y,d; θ)]|x; θ(κ)]

=

N
∑

n=1

1
∑

dn=0

∫

∞

−∞

ln[p(yn, dn; θ)] · p(yn, dn|xn; θ
(κ))dyn, (1)

whereκ is the iteration index.

We first writep(yn, dn|xn) = p(yn|dn, xn)P (dn|xn). Then
we find for data that are not dropped (dn = 0)

p(yn|dn = 0, xn; θ
(κ)) =

{

δ(yn − xn), if xn > c
N (yn;θ(κ))

I0(θ
(κ))

, if xn = c
(2)

and for data that are dropped (dn = 1)

p(yn|dn = 1, xn; θ
(κ)) =

{

0, if xn > c

δ(yn − c), if xn = c
. (3)

Here,Ij(θ(κ)), j = 0, 1, 2, is defined as follows:

Ij(θ
(κ)) =

∫ c

−∞

y
jN
(

y;µ(κ)
, (σ2)(κ)

)

dy. (4)

Furthermore, the posterior of the hidden variabledn can be com-
puted using Bayes’ rule

P (dn|xn; θ
(κ)) =

p(xn|dn; θ
(κ))P (dn)

∑1
dn=0 p(xn|dn; θ(κ))P (dn)

. (5)

Four cases can be discerned. Using the notationβn(d, z) :=

P (dn|z(xn); θ
(κ)), wherez(xn) = 1 indicates thatxn = c and

z(xn) = 0 thatxn > c, we obtain:

βn(1, 1) =
π(κ)

I0(θ(κ))(1− π(κ)) + π(κ)
(6)

and βn(0, 1) = 1 − βn(1, 1). Furthermore, it is obvious that
βn(1, 0) = 0 and thusβn(0, 0) = 1.

We further note that

p(yn, dn; θ) = P (dn; θ)p(yn|dn; θ)

=

{

πδ(yn − c), if dn = 1
(1− π)N (yn; θ), if dn = 0

(7)

Using all this in (1) and calculating the derivative of the auxiliary
function, the following iterative parameter estimation formulas can
be derived:

µ
(κ+1) =

∑N

n=1(1− zn)xn + I1(θ
(κ))

I0(θ
(κ))

∑N

n=1 znβn(0, 1)

N −
∑N

n=1 znβn(1, 1)
(8)

(

σ
2
)(κ+1)

=

∑N

n=1

[

zn

(

I2(θ
(κ))

I0(θ
(κ))

− 2µ I1(θ
(κ))

I0(θ
(κ))

+ µ2
)

βn(0, 1)

]

N −
∑N

n=1 znβn(1, 1)

+

∑N

n=1

[

(1− zn)
(

xn − µ(κ)
)2
]

N −
∑N

n=1 znβn(1, 1)
(9)

π
(κ+1) =

∑N

n=1 znβn(1, 1)

N
, (10)

These formulas reduce to the ones presented in [5] for censored data
only, i.e., if the dropping rate is set toπ = 0.

2.2. Classification

While the derivation in the last section was done for scalar measure-
ments for simplicity, we now assume that RSSI readings ofNAP

access points are available, which are gathered in the observation
vectorx. An optimal classification rule for censored Gaussian data
has been given in [5] where the user’s location is determinedas that
positionℓk, which has the highest posterior probability:

p(ℓk|x) =

∏NAP
i=1 p(xi|ℓk)P (ℓk)

∑K

k′=1

∏NAP
i=1 p(xi|ℓk′)P (ℓk′)

(11)

whereK is the number of offline training locations andxi is the
RSSI ofi-th AP.P (ℓk) is the prior on the position. Here we assumed
independence of the RSSIs of different APs.

For censored and dropped Gaussian data, the likelihoodp(xi|ℓk)
can be calculated as follows

p(xi|ℓk) =

{

N (xi; µ̂k,i, σ̂
2
k,i), if xi > c

(1− π̂k,i)I0(µ̂k,i, σ̂
2
k,i) + π̂k,i, if xi = c

. (12)

Here,(µ̂k,i, σ̂
2
k,i, π̂k,i) are the estimated parameters of thei-th AP

at locationℓk.

3. MLLR BASED ADAPTATION

The RSSI readings that are used for positioning have been shown
to depend on the hardware, in particular on the WiFi chipset and
on the antenna used in the target device that is to be located.This
dependency can result in large positioning errors if the target device
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employs different hardware than the device that was used to collect
the training data.

MLLR adaptation aims at determining the parameters of an
adaptation matrixW such that the likelihood of the adaptation data
is maximized [9, 10]. In the following we assume supervised adap-
tation, i.e., the presence of a calibration phase, in which the positions
where the adaptation RSSI values have been measured, are known.

Let µk,i be the mean value of the Gaussian describing the PDF
of the RSSI values of thei-th AP at positionℓk. We gather the mean
values of all APs in vectorsµk = [µk,1, . . . , µk,i, . . . , µk,NAP

]T

for all positionsℓk, k = 1, . . . ,K. Our goal is to estimate adapted
mean vectorŝµk via

µ̂k = W
(r(k))

ξk = A
(r(k))

µk + b
(r(k))

, (13)

whereW = [A|b] is the(NAP × (NAP + 1))-dimensional aug-
mented transformation matrix which gathers the parametersof the
affine transform andξk = (µT

k , 1)
T is the extended mean vector.

Note that we consider the general case of multiple transformation
matrices, wherer(k) ∈ {1, R} is the regression class index, which
indicates which of theR affine transforms is to be applied to the
Gaussian describing positionℓk.

Similarly, let Σk be the (diagonal) covariance matrix of the
Gaussian random vector modelling the RSSI readings of the APs at
positionℓk. We will also consider variance adaptation:

Σ̂k = B
T
k H

(r(k))
Bk (14)

where H(r(k)) is the transform to be estimated andBk is the
Choleski factor ofΣk. Assuming diagonal covariance matrices,
eq. (14) simplifies tôσ2

k,i = h
(r(k))
i σ2

k,i; i = 1, . . . , NAP .

To determine the maximum likelihood estimates of the transfor-
mation matrices for mean and variance from the adaptation data we
employ again the EM algorithm.

Let γk(n) be the posterior probability that RSSI measurement
vectorxn is from positionℓk. In the case of supervised adaptation
considered here it is equal to one if the measurement was indeed
from positionℓk and zero else.

The expected loglikelihood of the complete data, given the ob-
served, has a similar form as before:

Q(λ;λ(κ)) =

K
∑

k=1

N
∑

n=1

γk(n)

NAP
∑

i=1

1
∑

dn,i=0
∫ ∞

−∞

ln (p(yn,i, dn,i;λ)) p(yn,i, dn,i|xn,i; λ
(κ))dyn,i. (15)

Hereλ = {λk,i; k = 1, . . . ,K; i = 1, . . . , NAP }, whereλk,i =

{πk,i,w
(r(k))
i , h

(r(k))
i }, is a short hand notation for the parameters

to be estimated. Here,w(r(k))
i is thei-th row ofW(r(k)). In (15) the

first sum is over the locations for which adaptation data are avail-
able, the second enumerates the adaptation data, while the third is
over all APs and the fourth over the possible values of the random
variabledn,i which indicates whether thei-th component of then-th
observation is dropped or not.

The terms in Eq. (15) have already been discussed in Section 2
with the only difference thatyn,i is now assumed to be drawn
from a Gaussian with adapted parameters:yn,i ∼ N (µ̂k,i =

w
(r(k))
i ξk, σ̂

2
k,i = h

(r(k))
i σ2

k,i).

Reestimation formulas forπk,i,w
(r(k))
i andh(r(k))

i are obtained
by computing the derivatives of the auxiliary function in Eq. (15)
w.r.t. these parameters and setting them to zero. This leadsto the

following update equation for the rows ofW(r(k)):
N
∑

n=1

γk(n)

σ2
k,i

(

zn,i

I1(λ
(κ)
k,i )

I0(λ
(κ)
k,i )

βk,n,i(0, 1) + (1− zn,i)xn,i

)

ξ
T
k =

N
∑

n=1

γk(n)

σ2
k,i

(1− zn,iβk,n,i(1, 1))
(

w
(r(k))
i

)(κ+1)

ξkξ
T
k , (16)

while explicit updates can be found forπk,i andh(r(k))
i :

(πk,i)
(κ+1) =

∑N

n=1 γk(n)zn,iβk,n,i(1, 1)
∑N

n=1 γk(n)
(17)

(

h
(r(k))
i

)(κ+1)

=
1

σ2
k,i

∑N

n=1 γk(n) (1− zn,iβk,n,i(1, 1))

N
∑

n=1

γk(n)

[

(1− zn,i)(xn,i − µ̂k,i)
2
βk,n,i(0, 0)

+ zn,i

(

I2(λ
(κ)
k,i )

I0(λ
(κ)
k,i )

− 2
I1(λ

(κ)
k,i )

I0(λ
(κ)
k,i )

µ̂k,i + µ̂
2
k,i

)

βk,n,i(0, 1)

]

. (18)

Here, βk,n,i(d, z) = P (dn,i|z(xn,i), λ
(κ)
k,i ), similar as in Sec-

tion 2.1.
As can be seen in equations (16) and (18), the dropped or cen-

sored data also contribute to the estimates, besides the observable
ones. If there are no censored and dropped data, thenβk,n,i(0, 1) =
1 andβk,n,i(1, 1) = 0, and the equations reduce to the re-estimation
formulas forW andH given in [11].

4. REGRESSION CLASSES

The above formulas have been derived for the general case of mul-
tiple transformation matrices. This allows for the user locations to
form regression classes, where all positions in the same regression
class share the same transformation, while the PDFs corresponding
to positions in other regression classes transform differently.

A critical issue is how to define the regression classes, within
which the parameters of all positions change in the same manner.
Here we assume that locations with similar mean RSSI values trans-
form in the same manner, irrespective of the actual identityof the
access points, as long as they operate in the same frequency band.
We thus conduct a k-means clustering of the mean vectorsµk of the
PDFs of all positionsℓk to obtainR regression classes.

5. EXPERIMENTAL RESULTS

5.1. Classification on Artificial Data

In a first set of experiments we generated artificial data to assess the
impact of the drop-out rate and the amount of adaptation dataon the
classification performance.

We generated 1000 samples of training data for each ofK = 6
positions and forNAP = 2 access points. We then assumed a sin-
gle affine transformation of the means of the training data for each
location according tôµk = Aµk + b, whereA = (0.9, 0; 0, 0.9)
andb = [−3, 2]T . Adaptation and test data were then generated by
sampling from the transformed Gaussians with meansµ̂k and vari-
ances as those of the training data. While the amount of adaptation
data was gradually increased from 1% to 5, 10, 50 and 100% of the
number of training samples, the number of test samples was fixed at
100 observations per position. We experimented with a drop-out rate
of 0% (no drop-outs,π = 0) and20% (π = 0.2).
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Table 1. Classification results (% positions correctly classified)
when training and test data are generated from same parameter set

Aware of dropping yes no
π = 0 86 86
π = 0.2 75 64

Table 2. Adaptation performance (% positions correctly classified)
on artifical data as a function of amount of adaptation data

No. Pos π 0% 1% 5% 10% 50% 100%
3 0 68 81 85 85 86 86

0.2 56 70 73 74 75 75
6 0 68 85 86 86 86 86

0.2 56 72 75 75 75 75

Table 1 discusses the impact of the drop-out rate without adap-
tation. Here, the ’adaptation’ data were used for a completely new
training from scratch for each of the6 positions. It can be seen
that the parameter estimation formulas derived in Section 2are able
to cope with an unknown drop-out rate, which is estimated (aware
of dropping: yes), while assuming absence of drop-outs (aware of
dropping: no) leads to clearly inferior classification accuracy if in-
deed drop-outs occurred.

Table 2 demonstrates the effectiveness of applying the proposed
adaptation algorithms. We can notice that when the number ofadap-
tation data per position is small, i.e., less than10%, classification
results using6 positions with adaptation data are about1 to 4% bet-
ter than those when adaptation data are only available for3 positions.
The column with0% of adaptation data shows the results when no
adaptation is performed. Comparing with the results of Table 1 it is
clear that the classification results after adaptation approach those of
retraining, except when there is only1% of adaptation data, even if
adaptation data are only available for3 out of6 positions.

5.2. Classification on Field Data

We conducted measurements on3 floors of an office building with
roughly30 rooms (lecture halls, office and laboratory rooms), where
each floor has an overall size of35m by 35m, RSSI values were
taken at60 different positions with an average distance of5.0m be-
tween2 positions.200 measurements were taken per position with
2 different smartphones at each position. The data of the firstsmart-
phone was used to estimate the training models while data from the
second smartphone was divided into2 sets at each position, the first
being used for adaptation (0, 5, 25, or 75 samples) or retraining (190
samples) from scratch and the second for testing (10 samples). For
the measured data, the estimated dropping rate averaged over all APs
and all positions was approximately0.3.

For the adaptation procedure, we sorted the estimated training
means at each position in descending order, and used only the8
strongest APs to estimate the adaptation matrices since thecontri-
bution of the remaining APs to the likelihood was negligible. The
adaptation matrices are then used to calculate the adapted parame-
ters of the8 strongest APs at all positions being in the same cluster.

Table 3 shows the dependency of the positioning accuracy on
the number of locations for which adaptation data are available and
the amount of adaptation data. The results in Table 3 are the average
of the root mean square (RMS) positioning error of50 experiments.
In each experiment, test data, adaptation data and the positions with
adaptation data are randomly selected. As expected, the more posi-
tions there are with adaptation data and the more adaptationsamples
per positions, the better the positioning results.

Table 3. RMS positioning error (in [m]) as a function of the amount
of positions having adaptation data and the amount of adatation data

Condition Adaptation Method
No. Pos with No. adapt. µ & σ2, µ only, µ only,
adapt. data data A full A full A diag

0 6.15

15

5 5.08 4.76 3.93
25 4.60 4.41 3.93
75 4.62 4.52 3.93

30

5 3.86 3.96 3.84
25 3.82 3.96 3.85
75 3.76 3.91 3.85

60

5 3.74 3.93 3.84
25 3.67 3.87 3.83
75 3.65 3.87 3.84

retrain 2.43

Table 4. Effect of number of clusters on RMS positioning error

No. of clusters 1 2 3

RMS pos. error [m] 3.76 3.48 3.25

For all considered adaptation methods, improvements in posi-
tioning accuracy are obtained, even when very few adaptation data
available. However, mean and variance adaptation with a completely
filled matrixA delivers only the best results if there are sufficiently
many adaptation data, while the use of only mean adaptation with
a diagonalA is superior if only few adaptation data are available,
since fewer parameters need to be estimated.

However, positioning accuracy when all60 positions have adap-
tation data is still well below the accuracy achievable, when training
and test data are collected by the same smartphone, which is2.43m.

Next we measured the impact of multiple regression classes.Ta-
ble 4 shows the positioning results when doing clustering before
(mean and variance) adaptation, assuming that in each cluster 50%
of positions have adaptation data with 75 adaptation samples per
position. It has to be noted that the optimal number of regression
classes depends on the amount of adaptation data available.The
more adaptation data the more transformation matrices can be reli-
ably estimated. In our setup the best results were achieved with 3
clusters, which led to a reduction of the RMS positioning error from
3.76 to 3.25m.

6. CONCLUSIONS

In this paper we have developed a method for adapting trainedmod-
els of RSSI measurements to the specifics of the testing WiFi device
within the MLLR framework. Parameter estimation formulas have
been derived both for mean and variance adaption. They account for
the facts that part of the data may be censored since they are below
the reception threshold of the WiFi chipset and that data aredropped
at an unknown rate, probably due to limitations of the software. Fur-
ther, we proposed to cluster the potential user positions inmultiple
regression classes, where positions in the same regressionclass share
their adaptation parameters, thus gaining flexibility in modelling the
deviation of test data from training data. The performance of the
algorithms was first validated on artificially generated data and then
on real field data of an experimental indoor positioning system. Im-
provement in positioning result was observed, and the effectiveness
of using multiple regression classes was demonstrated.
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