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ABSTRACT

It was also found that WiFi chips exhibit a limited sensttpnand
that RSSI values below the reception threshold (e-d.00 dBm)

We are concerned with the so-called fingerprinting methad fo gre censored, i.e., can be thought of being clipped to thainmim

WiFi-based indoor positioning, where the measured redesignal
strength index (RSSI) is compared with training data to cape
with an estimate of the user’s location. We introduce a nt:floo
adapting the trained models to the statistics of the RS8kgabf the
target (testing) WiFi device, which is derived from the Maxm
Likelihood Linear Regression (MLLR) framework. By intrating
regression classes the assumption of a linear relatiorsipeen

the RSSI readings of the testing device and the training data

relaxed, leading to superior adaptation performance. niReter

adaptation formulas are derived for the general case ofoceds
and dropped data. While censoring occurs due to the limgedis
tivity of WiFi chips, dropping is probably caused by limitats of

the operating system of the portable devices. Experimesits dn

simulated and real-world data demonstrate the effectagioé the

proposed algorithms.

value. In [5] we have proposed an Expectation Maximizatiokl)
algorithm to estimate the parameters of such censored (aawka.
In this way one was able to exploit the location informatibatt
is given by the fact that some APs are partly 'inaudible’ ataia
locations while they are not at other positions.

In [7] it was pointed out that differences in RSSI readings ar
not only caused by environmental and propagation factarsthat
they are also caused by different hardware, i.e., diffechipsets
or antennas. The authors observed differences as higi3@dBm
between chipsets of different vendors and up-t20 dBm among
chipsets of the same vendor, and even devices using the $gpsetc
could show significantly different RSSI readings.

This and the so-called drop-out problem mentioned in [7] we
also experienced in our own investigations. The latterrsefe the
fact that occasionally RSSI readings of supposedly stromaygh

Index Terms— Indoor positioning, signal strength, censored access points were not reported by the software. A closrdbthis

data, expectation maximization, maximum likelihood linesgres-
sion

1. INTRODUCTION

Due to the unavailability of GPS, accurate indoor positignie-

phenomenon revealed that the drop-out rate increased vethum-
ber of access points: if more than 20 APs were above the iiecept
threshold, the drop-out rate rose to about 20%, with a teryde&nin-
crease to up to 40% for more than 40 audible APs. With the itlyiqu
of WiFi, such large numbers of APs are not unrealistic. Doops
will also occur if the APs temporarily switch off for energgaving
purpose. We conjecture that the dropping phenomenon ieddys

mains a challenging task. Many algorithms have been prapose limitations of the operating system of the portable devisesh as

such as lateration based, angulation based and fingengribéised
techniques using radio signals, such as Ultra-WidebangBe&,

Bluetooth Low Energy or WiFi, often in combination with ac-

celerometer and magnetometer measurements, see e.g3[4]2,

However, due to multipath propagation, missing line-gfsi
unsynchronized clocks etc., lateration and angulatioredbdsech-
nigues seem to be unsuitable for low-cost positioning systeAs a
result the fingerprinting method, which has been pioneer¢®]j is
of particular interest, where in an offline (training) phale read-
ings of the RSSI of access points (APs) measured at the posib
get positions are gathered, and the measurements durironline
(classification) phase are compared to these training daane up
with a decision on the user’s location. WiFi fingerprintirestfound
widespread use due to the availability of the infrastruetand the
ubiquity of WiFi in portable devices, such as laptops, sptahes
etc..

limited buffer sizes or time-outs, and the operation of theAM
system.

In this paper we propose algorithms to counteract the negati
effects of drop-outs and differences in hardware variation the
positioning accuracy. We will extend the EM algorithm foe tisti-
mation of the parameters of a Gaussian in the presence ofreghs

data that was presented in [5] to the case of random dropging o

measurements at an unknown dropping rate. Furthermorelagm a
tation algorithm will be proposed that adapts the parametéthe
trained models to the statistics of the RSSI measuremerite dér-
get testing device. Compared to the calibration methodgzeg in
[8], where a linear relationship was assumed between the IR&&-
ings of the training and the target device, that was learrd hgast
Squares approach, we relax the linearity assumption byering
user positions in multiple regression classes that sharedte lin-
ear relationship, however different from the other clustéie also

Accurate positioning based on RF signal strength faces alsmvestigate the benefits from adapting the variances, iitiaddo

many challenges. It is well known that the WiFi scan resu#ts c
vary greatly, depending on the number of people in the \igitie
orientation of the device, and many more factors. To overctirase
variations, refined statistical models and classificatioles have
been developed [4, 5, 6].

1981

the means of the training models. The parameters of theftrans
mations are learnt as to maximize the likelihood of the aatagpt
data, adopting a very successful approach to speaker &dapta
automatic speech recognition, known as Maximum Likelihbod
ear Regression (MLLR) [9, 10, 11].
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2. PARAMETER ESTIMATION AND CLASSIFICATION IN
THE PRESENCE OF CENSORED AND DROPPED DATA

2.1. Parameter Estimation

In [5], an EM algorithm has been derived for estimating theapa
eters of censored Gaussian data. In this paper we extenddtiel m
to consider the presence of dropped data in the measurenseets
Fig. 1.
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Fig. 1. Measurement model.

Here, the hidden variables,, n = 1,... N, indicate whether
an observation is dropped.{ = 1) or not (@, = 0), wherer =
P(d, = 1) is called thedropping rate in the following. The vari-
ables are gathered in the binary veafbe= [d1, ..., dn], whereN
is the number of measurements. Further, define: [y1, ..., yn],
where they,, are i.i.d. with Gaussian probability density function
(PDF)py (yn) = N (yn; 1, 02) if d, = 0, andy, = cif d, = 1,
where we set to the smallest measurable RSSI value (ecg=
—100dBm). Observable are the censored data= z1, ...,z N,
wherez,, = max(yn, ¢), with the censoring threshotdas above.

Notice the difference between censoring and drop-outsn Eve
the parameters of the Gaussian are such that practicallgmspndng
occurs (because — 30 > c), drop-outs will still occur!

Our goal is to estimate the parametérs= {y, 0> 7}. This
will be achieved by the Expectation Maximization (EM) aligom,
where the hidden variables afg, d} and the observable afex}.
Noting thatz,, does not convey more information abduthany,,,
the expected log-likelihood of the complete data, giverotiserved,
is given by:

waﬂzEmumdmm%W
_Z Z/ ln[p ymdn»e)] P(ymd ‘xnv‘g(}ﬂ))dyn 1)
n=1d, =0

wherex is the iteration index.

We first write p(yn, dn|zn) = p(yn|dn, zn)P(dn|zs). Then
we find for data that are not dropped.(= 0)

. 0(Yn — zn),if zn > ¢
P(ynldn = 0,2,;0") = {N(yn;e(W fo,=c @
ooty o 1 En =
and for data that are dropped,(= 1)
K 0, if xn, > ¢
p(yn|dn:1,xn;9( )) = {5(‘1/”76),“‘ In =c’ (3)
Here,I;(0)), j = 0,1, 2, is defined as follows:
L;0") =/ YN (y; u<“>,(02)(")> dy. @

Furthermore, the posterior of the hidden variald}ecan be com-
puted using Bayes' rule

p(@n|dn; 6) P(dn)

P(dp|zn; 0) = )
el O = S ealdns 00 P ()

®)
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Four cases can be discerned.
P(dn|z(zn); 0%), wherez(z,) =
z(xzn) = 0 thatz, > ¢, we obtain:

Using the notafip(d, z)
1 indicates thatr,, = ¢ and

()
™
n 1 1 6
Aull1) = Io(0)) (1 — (™) 4 () (6)
and $,(0,1) = 1 — fBa(1,1). Furthermore, it is obvious that

Bn(1,0) = 0 and thus3, (0, 0) = 1.
We further note that
P(Yn, dn; 0) = P(dn; 0)p(yn|dn; 0)
_ 7(yn — ©), ifd, =1 @
T A =m)N(yn;6),if dn =0

Using all this in (1) and calculating the derivative of thexidiary
function, the following iterative parameter estimatiomnfulas can
be derived:

11 (6
N(n-%—l) _ Z’]:]:I(l — Zn)Tn 11200); Zn 1 2nfBn(0,1)
N - Zn:l Z"ﬁ"(L 1)
(®)
N o0y o 1 (8(%) 5
( 2)(n+1) Yn=1 {Z” (10(9(@) To(e) TH ),371(0, 1)
o =
N — Zﬁf:l Z"/B"(la 1)
2
25:1 [(1 — Zn) (:L'" _ u(n)) :|
+ 9
S SANENTRY ©
N
At _ 2nz 20 (L D) a0

N )
These formulas reduce to the ones presented in [5] for cedstata
only, i.e., if the dropping rate is set to= 0.

2.2. Classification

While the derivation in the last section was done for scaleasure-
ments for simplicity, we now assume that RSSI readingsvafr
access points are available, which are gathered in the \atiger
vectorx. An optimal classification rule for censored Gaussian data
has been given in [5] where the user’s location is determasetthat
position,, which has the highest posterior probability:

Nap
| B - p(willk) P (Cx) (11)
S [T plailew ) P(le)
where K is the number of of'flme training locations ang is the
RSSI ofi-th AP. P(¢;) is the prior on the position. Here we assumed
independence of the RSSIs of different APs.
For censored and dropped Gaussian data, the likelipcod?;, )
can be calculated as follows
) o N(CEi;ﬂk,hé'%,i), if x; > ¢
p(@ilfe) = {(1 — ) To(fii 67.4) + Fns, if 2 = ¢

p(lelx) =

(12)

Here, (fix,i, 6.4, 71k,s) are the estimated parameters of tth AP
at location?y,.

3. MLLR BASED ADAPTATION

The RSSI readings that are used for positioning have beemrsho
to depend on the hardware, in particular on the WiFi chipset a
on the antenna used in the target device that is to be locdted.
dependency can result in large positioning errors if thgetadevice



employs different hardware than the device that was usedlkect  following update equation for the rows & (" (%)):

the training data. N ()
. . - e (n) L(A) T

MLLR adaptation aims at determining the parameters of an E 5 Zn,i G Peni(0,1) + (L= 2ni)@n | &k =
adaptation matridV such that the likelihood of the adaptation data n»=1 Thi To(Ay7)
is maximized [9, 10]. In the following we assume supervisddp N

. . . - . ) L ’yk(n) (r(k)) (k+1) T

tation, i.e., the presence of a calibration phase, in whiefpbsitions E ——= (1 = zn,iBrn,i(1,1)) (wi ) &kl , (16)
where the adaptation RSSI values have been measured, ava.kno n=1 Tk

Let ux,; be the mean value of the Gaussian describing the PDRvhile explicit updates can be found fer, ; andhﬁr““)):
of the RSSI values of theth AP at positior?,.. We gather the mean

N
values of all APS in VECtorg, = [th,1,- -, ki~ e Naop) - (m0.0) (D) = Yot V(M) 20, Brn,i (1, 1) 17)
for all positionsty, k = 1,..., K. Our goal is to estimate adapted ' SN w(n)
mean vectorg,, via (o41) 1
G = WOEg = AW, 4 ) @) (W)= -
k k k ’ Uﬁ,i anl Ye(n) (1 = 2n,iBr,n,i(1, 1))

whereW = [A|b] is the (Nap X (Nap + 1))-dimensional aug- N
mented transformation matrix which gathers the parametetse o a2 )

affine transform and,, = (u%,1)7 is the extended mean vector. 2 w(n) {(1 #0,8) (@i = i) B0, 0)

Note that we consider the general case of multiple transdtiom () (=)

matrices, where(k) € {1, R} is the regression class index, which LA 211()‘k,i)ﬂk 2 ) Bens(0,1)]. (18)
indicates which of theR affine transforms is to be applied to the T\ L) Tl kot | PRt
Gaussian describing positidh. ’ ’

n=1

) — ) (k) imi i .
Similarly, let =, be the (diagonal) covariance matrix of the '€ Brni(d,2) = Pldnilz(zn), A7), similar as in Sec

Gaussian random vector modelling the RSSI readings of treaP tion 2.1. . .
position/,,. We will also consider variance adaptation: As can be seen in equations (16) and (18), the dropped or cen-
sored data also contribute to the estimates, besides tleevabie

. =BiH"WB, (14)  ones. If there are no censored and dropped data,hen(0,1) =
where H"(®) is the transform to be estimated aml, is the 1andBkn:(1,1) = 0, and the equations reduce to the re-estimation
Choleski factor ofS,. Assuming diagonal covariance matrices, formulas forW andH given in [11].
eq. (14) simplifies té2 ; = b *o2 i =1,..., Nap.

To determine the maximum likelihood estimates of the tramsf

emnig?or;ggglr?‘iﬁgga ggr;ﬁtr;]c:nvarlance from the adaptaticnwia 'I_'he above formglas havg been dgrived for the general (;asellef m
’ tiple transformation matrices. This allows for the usemlians to
Let yi(n) be the posterior probability that RSSI measurementiorm regression classes, where all positions in the santessign
vectorx,, is from positioné,. In the case of supervised adaptation class share the same transformation, while the PDFs comesyg
considered here it is equal to one if the measurement wa®dnde to positions in other regression classes transform diftéyre

4. REGRESSION CLASSES

from position/,. and zero else. A critical issue is how to define the regression classes,imvith

The expected loglikelihood of the complete data, given tie o which the parameters of all positions change in the same enann
served, has a similar form as before: Here we assume that locations with similar mean RSSI valaes-+
K N Nap 1 form in the same manner, irrespective of the actual idemtitthe

QN )\(n)) _ Z Z Yi(n) Z Z access points, as long as they operate in the same frequandy b

We thus conduct a k-means clustering of the mean vegigrsf the

k=1n=1 i=1 d, ;=0 " . .
PDFs of all positiong;. to obtainR regression classes.

/ I (p(Yn.i dni; N)) DYty donsi |, Ay (15)

HereA = {\vi;k=1,...,K;i=1,...,Nap}, where),; =
{mp.s, w D B3 Vis a short hand notation for the parameters
to be estimated. Hersvf(k))is thei-th row of W("(*)) In (15) the  In a first set of experiments we generated artificial datasesssthe

first sum is over the locations for which adaptation data &egl-a  impact of the drop-out rate and the amount of adaptationatatae
able, the second enumerates the adaptation data, whilditdes  classification performance.

5. EXPERIMENTAL RESULTS

5.1. Classification on Artificial Data

over all APs and the fourth over the possible values of theoem We generated 1000 samples of training data for eadki of 6

variabled., ; which indicates whether thieth component of the-th  positions and fotV4p = 2 access points. We then assumed a sin-

observation is dropped or not. gle affine transformation of the means of the training dateefch
The terms in Eq. (15) have already been discussed in Sectionl9cation according tgr, = Apy, + b, whereA = (0.9,0;0,0.9)

with the only difference thay,.; is now assumed to be drawn andb = [-3,2]". Adaptation and test data were then generated by

from a Gaussian with adapted parametets;; ~ N (fw; =  Sampling from the transformed Gaussians with meapsnd vari-

w§r<k))£k7 62, = hEr(k))g_[% ). ances as those of the training data. While the amount of atiapt

data was gradually increased from 1% to 5, 10, 50 and 100%eof th
Reestimation formulas fory, ;, wgr““)) andhﬁr(k)) are obtained number of training samples, the number of test samples wed &ik
by computing the derivatives of the auxiliary function in.Ef5) 100 observations per position. We experimented with a dudpate
w.r.t. these parameters and setting them to zero. This leatfe  of 0% (no drop-outsy = 0) and20% (r = 0.2).
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Table 1. Classification results (% positions correctly classified) Table 3. RMS positioning error (in [m]) as a function of the amount

when training and test data are generated from same paraseéte

of positions having adaptation data and the amount of adatdata

Aware of dropping|| yes | no Condition Adaptation Method
T™=0 86 | 86 No. Poswith | No. adapt.| 1 & 0%, | ponly, | xonly,
T=0.2 75 | 64 adapt. data data Afull | Afull | A diag
Table 2. Adaptation performance (% positions correctly classjfied g £ 08 31756 303
on artifical data as a function of amount of adaptation data 55 260 741 303
No. Pos| | 0% | 1% | 5% | 10% | 50% | 100% 15 75 462 | 452 | 3.3
3 0 68 | 81 | 85 85 86 86 5 3.86 3.96 3.84
0256 [ 70| 73| 74 75 75 30 25 3.82 3.96 3.85
6 0 68 | 85 | 86 86 86 86 75 3.76 3.91 3.85
02| 5 | 72 | 75 75 75 75 5 3.74 3.93 3.84
60 25 3.67 3.87 3.83
Table 1 discusses the impact of the drop-out rate withoup-ada 75 3.65 3.87 3.84
tation. Here, the 'adaptation’ data were used for a comiyletew retrain 2.43

training from scratch for each of th& positions. It can be seen
that the parameter estimation formulas derived in Sectiarezble
to cope with an unknown drop-out rate, which is estimatedataw
of dropping: yes), while assuming absence of drop-outs r@awé
dropping: no) leads to clearly inferior classification away if in-
deed drop-outs occurred.

Table 2 demonstrates the effectiveness of applying theosexb
adaptation algorithms. We can notice that when the numbadab-
tation data per position is small, i.e., less thd¥o, classification
results using positions with adaptation data are abaub 4% bet-
ter than those when adaptation data are only availabfegositions.
The column with0% of adaptation data shows the results when n
adaptation is performed. Comparing with the results of &dbit is
clear that the classification results after adaptationagr those of
retraining, except when there is onl$6 of adaptation data, even if
adaptation data are only available fout of 6 positions.

5.2. Classification on Field Data

We conducted measurements ®floors of an office building with

[0)

Table 4. Effect of number of clusters on RMS positioning error
1 2 3
3.76 | 3.48 | 3.25

No. of clusters
RMS pos. error [m]

For all considered adaptation methods, improvements iit pos
tioning accuracy are obtained, even when very few adaptatata
available. However, mean and variance adaptation with ptziely
filled matrix A delivers only the best results if there are sufficiently
many adaptation data, while the use of only mean adaptatitin w
a diagonalA is superior if only few adaptation data are available,
since fewer parameters need to be estimated.

However, positioning accuracy when édl positions have adap-
tation data is still well below the accuracy achievable, mtraining
and test data are collected by the same smartphone, wiictBisa.

Next we measured the impact of multiple regression clagses.
ble 4 shows the positioning results when doing clusterinipriee
(mean and variance) adaptation, assuming that in eactechft
of positions have adaptation data with 75 adaptation sanpée

roughly 30 rooms (lecture halls, office and laboratory rooms), whereposition. It has to be noted that the optimal number of resjoes

each floor has an overall size 85 m by 35 m, RSSI values were
taken at60 different positions with an average distancesdf m be-

classes depends on the amount of adaptation data availdble.
more adaptation data the more transformation matrices eaelb

tween2 positions. 200 measurements were taken per position withably estimated. In our setup the best results were achievd3w

2 different smartphones at each position. The data of thesfinstrt-
phone was used to estimate the training models while data tihe
second smartphone was divided i2tsets at each position, the first
being used for adaptation (0, 5, 25, or 75 samples) or réia{i 90
samples) from scratch and the second for testing (10 sajniites
the measured data, the estimated dropping rate averageallo%'s
and all positions was approximatedy3.

For the adaptation procedure, we sorted the estimatedrgain

clusters, which led to a reduction of the RMS positioningpefrom
3.76 t0 3.25 m.

6. CONCLUSIONS

In this paper we have developed a method for adapting traimoet
els of RSSI measurements to the specifics of the testing Wikce

means at each position in descending order, and used onlg thewithin the MLLR framework. Parameter estimation formulas/é

strongest APs to estimate the adaptation matrices sinceottisi-
bution of the remaining APs to the likelihood was negligiblEhe
adaptation matrices are then used to calculate the adaptachp-

been derived both for mean and variance adaption. They atému
the facts that part of the data may be censored since theyelow b
the reception threshold of the WiFi chipset and that dataeopped

ters of the8 strongest APs at all positions being in the same clusterat an unknown rate, probably due to limitations of the sofew&ur-
Table 3 shows the dependency of the positioning accuracy other, we proposed to cluster the potential user positiomsuitiple

the number of locations for which adaptation data are avigiland
the amount of adaptation data. The results in Table 3 arevérage
of the root mean square (RMS) positioning errob0fexperiments.
In each experiment, test data, adaptation data and thegussitith
adaptation data are randomly selected. As expected, the posi-
tions there are with adaptation data and the more adaptsdioples
per positions, the better the positioning results.

1984

regression classes, where positions in the same regretagsshare
their adaptation parameters, thus gaining flexibility indeiing the
deviation of test data from training data. The performantcéhe
algorithms was first validated on artificially generatedadatd then
on real field data of an experimental indoor positioning exystim-
provement in positioning result was observed, and the tffaess
of using multiple regression classes was demonstrated.
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