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ABSTRACT

Robust object tracking is a challenging task in computer vi-
sion. Color features have been popularly used in visual track-
ing. However, most conventional color-based trackers either
rely on luminance information or use simple color represen-
tations for image description. During the tracking sequences,
the perceived color of the target may change because of the
varying lighting conditions. In this paper, we learn the col-
or patterns offline from pixels sampled from images across
different camera views. In the new color feature space, the
proposed tracking method performs robustly in various envi-
ronment. The new color feature space is learned by learning
a linear transformation and a dictionary to encode pixel val-
ues. To speedup the feature extraction, we use the marginal
regression to calculate the sparse feature codes. Experimen-
tal results demonstrate that significant improvement can be
achieved by using our learned color features, especially on
the video sequences with complicated lighting conditions.

Index Terms— Visual tracking, color features, marginal
regression, feature learning

1. INTRODUCTION

Visual object tracking is one of the most challenging prob-
lems in computer vision. It plays a crucial role in many ap-
plications, such as surveillance, human computer interaction
and auto-control systems [1, 2]. Several factors, such as illu-
mination variations, appearance deformation, and occlusion-
s complicate the problem. In this paper we aim to enhance
the performance of object tracking by learning color features
which have the capability of handling complicated color ap-
pearances.

Color-based features have been proven to be an importan-
t cue for visual tracking. However, color measurements can
vary significantly over an image sequence due to variations in
illuminant, shadows, shading, specularities, camera and ob-
ject geometry. For example, the perceived color of same parts
for a target may appear to be different. Considering this ob-
servation and as validated from our experiments, using color
features such as RGB, HSV or even more complicated color
attributes representation may not be adequate to achieve an
robust color representation[3—8]. A recent work [9] proposes
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Fig. 1: (a)Sampled pixels (blue box) from one tracking frame,
in which the target’s face (red box) is under bright lighting
condition. (b) Encoding of a randomly sampled pixel from
this bright patch. (c) Sampled pixels (blue box) from one
frame, in which the target’s face (red box) is under dark light-
ing condition. (d) Encoding of a randomly sampled pixel
from this dark patch. It can be seen from (a) and (c), the
color for the corresponding sampled patches are not close to
each other. (b) and (d) show the results of the encoding using
our approach. Using our proposed algorithm, the obtained en-
coding values are very similar to each other for corresponding
pixels in the tracking target.

a framework to address the illumination variation in person
re-identification. Hence we propose a data driven framework
that learns rich and robust color features from raw pixel val-
ues for visual tracking problems.

Visual tracking is generally classified in two categories:
generative and discriminative. The generative tracking meth-
ods adopt an appearance model to express the target observa-
tions. Some of the most popular generative tracking methods
are incremental tracker[10], structural sparse tracker[11] and
sampling Tracker [12]. Discriminative tracking methods ad-
dress the tracking as a classification problem [13, 14]. The
strategy of tracking is to search the target location, which op-
timally extracts the target from the background [15, 16]. Kalal
et al. [14] train a binary classifier from labeled and unlabeled
examples. Babenko et al. [17] propose a multiple instance

ICASSP 2015



learning algorithm for object tracking. Recently, Henriques
et al. [18] explores a dense sampling strategy while showing
that the process of taking subwindows in a frame induces cir-
culant structure. Danelljan et al. [5] extend the KCF tracker
with color attributes. Given the competitive performance and
fast speed, we base our method on the KCF tracker.

In this paper, we aim to learn new color features for videos
under various lighting environment for visual tracking. In the
learned color space, the codes of the pixels are robust to var-
ious angles of view, shadows, shading, etc. An auto-encoder
based framework is used to transform the RGB pixel to a
higher dimensional space. Then the transformed pixel val-
ues are encoded using marginal regression technique to attain
more discriminative sparse codes. Fig.1 shows the difference
of original RGB pixels and the corresponding encoding with
proposed method in a tracking sequence.

2. THE KCF TRACKER

We aim to learn color features to enhance the state-of-the-art
tracking methods. Recently, the tracking system with the Ker-
nelized Correlation Filter (KCF) [18] achieves very good per-
formance. Hence, we integrate our feature learning method
into this system. In this section, we briefly introduce the
tracking system. Readers may refer to [18] for more details.

The classifier of KCF is trained using a single grayscale
image patch X that is centred around the target. Taking ad-
vantage of the cyclic property and appropriate padding, KCF
considers all cyclic shifts x; as the training examples for the
classifier. These examples are labelled with a Gaussian func-
tion correspondingly.

The goal of training is to find a function f(z) = w’z
that minimizes the squared error over samples x; and their
regression targets y;,

min 3 {0(x).w) — il +Awl* @

where ¢ is the mapping to the Hilbert space induced by the k-

ernel x, defining the inner product as (¢(z), ¢(x')) = k(x, z’).

The A is a regularization parameter that controls overfitting.
After mapping the inputs of a linear problem to a non-
linear feature-space ¢ (), the solution w can be expressed as
w = Zl a;p(x;). A
ar=—4 @)
k2T 4 A
where the hat ~ denotes the Discrete Fourier Transform of a
vector. Because of the cyclic structure of the samples, k¥ is
the kernel correlation of x with itself, in the Fourier domain.
In the detection step, a grayscale patch z is cropped out in
the new frame. The detection scores are calculated as f (2) =
(k*#)* ® &, where k** is the kernel correlation of # and z.
Here x denotes the grayscale patch of the target appearance,
which is learned over multiple frames. The target position in

the new frame is then estimated by finding the translation that
maximizes the score f(z). Readers may refer to [18] for more
details.

3. LEARNING COLOR FEATURES

As shown in Fig. 1, in the practical tracking tasks, the ap-
pearance of color changes during the sequences due to the
lightning. It can be seen that the patches sampled appear to
be of different colors. Previous color feature based tracking
methods usually use RGB, HSV, color attributes or other col-
or handcrafted features to represent the target objects. How-
ever, such features cannot capture the essential color infor-
mation which should be robust to various lighting conditions,
shadows, shading, specularities and object geometry often oc-
curred in object tracking. Hence, we aim to learn a novel color
space to solve the challenging problems in visual tracking.

3.1. Training Dataset

Since the color of an object could change significantly due to
different views and illumination, a good tracker desires fea-
tures which are robust to various lighting conditions. There-
fore, we employ a learning model to learn color features from
selected images to handle illumination changes of objects in
visual tracking. Note that this is performed offline.

To train a robust color space, we need to collect train-
ing data under different lighting conditions. We use the
CAVIARA4REID dataset [19] to train the system. It is a per-
son re-id evaluation dataset which was extracted from the
caviar dataset for evaluation of people tracking and detection
algorithms. It is a dataset which contains a total of 72 pedes-
trians: 50 of them with two camera views and 22 with one.
The patches are carefully selected so that sampled patches
are distributed among different colors under various lighting
environment.

3.2. Objective Formulation

To learn a robust color space, the feature codes of colors
should be able to capture the essential color information
which is robust through the tracking videos.

We use a linear auto-encoder [20] to discover the stable
structures and patterns in the data and projects it into a ro-
bust color space. Through the auto-encoder, we enforce the
encoded pixels of same color to have same codes.

Recently, sparse coding [21][22] has been found to im-
prove the performance in classification, detection, tracking,
etc. Hence, to further improve the performance, a sparse en-
coding is applied to the descriptors. We propose a color fea-
tures learning framework to learn the transformation and dic-
tionary simultaneously.
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The first row of the formulation is the auto-encoder loss
function; the second row is the loss function of sparse cod-
ing. In the formulation, « is the encoding of the same color
under different lighting conditions; X denotes the input RG-
B values of randomly sampled pixels from patches extracted
from images under different lighting environment; W is the
linear transformation matrix that transforms each of the pix-
els into a new space; D is the sparse coding Dictionary to
encode these pixels in a more discriminative space; the pa-
rameter 1 controls the trade-off between the two terms. by
and b9 are the bias term. Because the training work is based
on 3-dimensional RGB pixel values, the input X is constitut-
ed of sampled pixels. And the output « is the encoding of
corresponding pixel.

3.3. Marginal regression for Sparse Coding

Due to the complexity of the tracking problem, the desired
feature extraction procedure should be computationally effi-
cient. The training time should be as short as possible to
improve the efficiency of the whole system. In both of the
training and feature extraction procedure, sparse coding is the
main time consuming operation. In the past, several method-
s have been proposed to improve the speed of sparse coding,
however it is still too slow for practical applications. Recently
the Lasso [23, 24] is a popular tool for ¢; optimization. Sim-
ilar to other ¢; optimization solutions, Lasso has complicated
operations. The gradient descent algorithms and LARS algo-
rithm [25] for Lasso require O(p® +np?) operations. To over-
come this limitation, in this section we show how marginal
regression can be used to obtain sparse codes faster.

Consider a regression model, Y = DS + z, where Y =
(Y1,Ya,---, Y)Y, Dis an x p design matrix, coefficients
B = (B1,B2,-,Bp)T and 2 = (21,29, -+ ,2,)7 is the
noise variable. For sparse coding, the main problem is vari-
able selection: determining which components of 3 are non-
zZero.

Marginal regression [26] (also called correlation learning,
simple thresholding [27], and sure screening [28]) is an ef-
ficient method for variable selection in which the outcome
variable is regressed on each covariate separately and the re-
sulting coefficient estimates are screened. To compute the
marginal regression estimates for sparse coding, we begin by
computing the marginal regression coefficients, assuming D
has been standardized, we calculate:

B=DTY 4)

Then, we threshold 3 using a parameter 7 > 0:

0

We sort these coefficient in terms of their absolute values, and
select the top largest coefficients whose ¢; norm is bounded
by 7. The thresholding parameter 7 is selected by cross vali-
dation.

This procedure requires just O(np) operations. When p is
much larger than n, marginal regression provides two orders
of magnitude speedup over Lasso. This is a significant ad-
vantage of marginal regression because it is now tractable for
much larger problems. [28] and [29] introduce more details
about the comparison of marginal regression and Lasso.

Bi

otherwise

>T (5)

3.4. Formulation Optimization

We alternatively optimize the objective function between «,
D, W, by and by. The L-BFGS gradient based optimization
procedure is used to update these values. Initially, « is updat-
ed based on their gradients while keeping D, W, by and by
fixed. Because it is difficult to solve the L1 norm in gradient
based optimization. Instead of calculating ||c||;, we use the
marginal regression to constrain updated results of a. Given
the pages limitation, we only show the partial derivative of
the loss function w.r.t a:
oL

a—:—anDTx(WX—Hn—Da) (6)
(67

where L is Eq.3. When we calculate the o from the above
function, Eq.5 is considered as the principle to select coeffi-
cients. Then D is updated based on the similar gradients of
itself and keeping o, W, by and by fixed. Finally, keeping o
and D fixed, W, b; and by are updated together.

During tracking, for each pixel of the candidate window,
we first use W and b; to transform it into the higher dimen-
sional space and use the learned dictionary D to compute the
sparse codes by marginal regression. When the size of a track-
ing candidate is M x N, the dimensionality of the features for
the candidate will be M x N x d where d is the number of
learned sparse coding dictionaries. Fig.1(b) and 1(d) show
the representations obtained by using the color space learning
framework. It can be seen that final encoding is very close to
each other for corresponding pixels in the tracking target.

4. EXPERIMENTS

We evaluate our learned color features to demonstrate its ro-
bustness to complicated lighting conditions on five challeng-
ing tracking sequences. These videos are recorded in indoor
and outdoor environments and have variations of illumina-
tion change, occlusion, etc. Besides the baseline tracker KCF
[18], we also compared the proposed algorithm with another
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nine state-of-the-art visual trackers: Frag[30], SMS [31], MIL
[17], IVT [10], ASL [11], TLD [14], VTS [12],ADA [5]. All
our experiments are performed using MATLAB R2012b on a
3.2 GHZ Intel Core i5 PC with 16 GB RAM. For fair compar-
ison, we use the source codes provided by the authors. They
were initialized using their default parameters.

To assess the performance of the proposed tracker, two
criteria, the center location error as well as the overlap rate,
are employed in our paper. A smaller average error or a bigger
overlap rate means a more accurate result. Given the tracking
result of each frame R and the corresponding ground truth
R, we can get the overlap rate by the PASCAL VOC [32]
%. Table 1 and 2 report the
quantitative comparison results respectively.

From Table 1 and 2, we can see clearly that in most sit-
uations, our method performs better than other state-of-the-
art methods. It proves that the learned color features make
the tracker robust to different lighting conditions. The results
of Matrix and Shaking sequences of VTS are directly quoted
from reference [12].

We also plot the results of Frag, SMS, MIL, IVT, ASL,
TLD, VTS, ADA and KCF trackers in visualization compar-
ison. The results of visualization are shown in Fig.2. It can
be seen that our proposed method performs very well on all
these challenging sequences. When the appearance of target
in Fig.2(a) changes significantly at frame 399, most of oth-
er trackers lose the face. In Fig.2(b), because of the heavy
illumination changes, only the proposed method tracks the
actor’s face correctly through the whole sequence. Excep-
t for our method, VTS, ADA and KCF also propose well
in sequence Shaking (Fig.2(c)). For the Coke sequence in
Fig.2(d), after the heavy occlusion at frame 269, our method
still tracks the can robustly. Although the skiing man moves
quite fast in Fig.2(e), our method succeed to catch the essen-
tial color information of the target.

criterion, score =

Table 1: Average center location error (in pixels). The bold
font indicate the best performance.

Sequence | Frag SMS MIL IVT ASL TLD VTS ADA KCF Ours
Matrix | 785 59.9 55.0 644 651 572 120 79.2 63.6 10.5

Shaking | 39.1 81.7 24.0 857 63.5 37.1 5.0 14.7 17.1 57
Trellis | 59.5 36.8 21.5 29.7 7.5 31.0 243 20.6 188 7.2
Coke | 54.8 819 46.7 829 60.1 25.0 624 30.7 18.6 10.9
Skiing | 101.095.5 66.9 1523 66.6 142.872.0 744 47.5 6.0

Table 2: Average overlap rate(%). The bold font indicate the
best performance.

Sequence | Frag SMS MIL IVT ASL TLD VTS ADA KCF Ours
Matrix | 16 17 20 32 42 16 60 12 13 65
Shaking | 18 21 45 23 21 39 70 59 58 72
Trellis | 29 21 30 35 80 48 49 59 58 86
Coke | 34 28 25 12 17 40 18 42 55 62
Skiing | 13 16 16 28 19 27 20 18 16 52

(e) Skiing

Frag sSMS ML VT TASL
TLD VIS ADA  KCF _ Ours

Fig. 2: Comparison of our approach with state-of-the-art
trackers in challenging situations such as illumination varia-
tions. The example frames are from the Trellis, Matrix, Shak-
ing, Coke and Skiing sequences respectively. The results of
proposed tracker are indicated by yellow boxes.

5. CONCLUSION

In this paper, we propose a framework for learning robust
and rich color features for KCF tracker. We learn the generic
features from a person re-identification dataset and apply the
learned features to challenging visual object tracking. More-
over, we propose a marginal regression based sparse coding
method to speedup the training and feature extraction proce-
dure. Experimental results demonstrate that our learned color
features are robust to complicated lighting conditions and are
able to improve the performance of the baseline tracker.

Acknowledgements: The research is supported by Ministry
of Education (MOE) Tier 1 RG84/12, Ministry of Education
(MOE) Tier 2 ARC28/14 and A*STAR Science and Engi-
neering Research Council PSF1321202099.

1979



References

(1]

[2]

[3]

[4]

[3]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

(13]

(14]

[15]

[16]

Alper Yilmaz, Omar Javed, and Mubarak Shah, “Object tracking: A
survey,” Acm computing surveys (CSUR), vol. 38, no. 4, pp. 13, 2006.

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online object tracking:
A benchmark,” in Computer Vision and Pattern Recognition (CVPR),

2013 IEEE Conference on. IEEE, 2013, pp. 2411-2418.

Katja Nummiaro, Esther Koller-Meier, and Luc Van Gool, “An adaptive
color-based particle filter,” Image and vision computing, vol. 21, no. 1,
pp- 99-110, 2003.

Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet, “Color-
based probabilistic tracking,” in Computer visiontECCV 2002, pp. 661—
675. Springer, 2002.

Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg, and Joost
Van de Weijer, “Adaptive color attributes for real-time visual tracking,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2014. IEEE, 2014.

Gang Wang, Derek Hoiem, and David Forsyth, “Learning image simi-
larity from flickr groups using fast kernel machines,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 34, no. 11, pp.
2177-2188, 2012.

Jiwen Lu, Gang Wang, and Pierre Moulin, “Human identity and gen-
der recognition from gait sequences with arbitrary walking directions,”
Information Forensics and Security, IEEE Transactions on, vol. 9, no.
1, pp. 51-61, 2014.

Gang Wang, David Forsyth, and Derek Hoiem, “Improved object cat-
egorization and detection using comparative object similarity,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no.
10, pp. 2442-2453, 2013.

Rahul Rama Varior, Gang Wang, and Jiwen Lu, “Learning invariant
color features for person re-identification,” CoRR, vol. abs/1410.1035,
2014.

David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang,
“Incremental learning for robust visual tracking,” International Journal
of Computer Vision, vol. 77, no. 1-3, pp. 125-141, 2008.

Xu Jia, Huchuan Lu, and Ming-Hsuan Yang, “Visual tracking via adap-
tive structural local sparse appearance model,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 1822-1829.

Junseok Kwon and Kyoung Mu Lee, “Tracking by sampling trackers,”
in Computer Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 1195-1202.

Robert T Collins, Yanxi Liu, and Marius Leordeanu, “Online selec-
tion of discriminative tracking features,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 27, no. 10, pp. 1631-1643,
2005.

Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk, “Pn learning:
Bootstrapping binary classifiers by structural constraints,” in Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE, 2010, pp. 49-56.

Huiyu Zhou, Yuan Yuan, Yi Zhang, and Chunmei Shi, “Non-rigid ob-
ject tracking in complex scenes,” Pattern Recognition Letters, vol. 30,
no. 2, pp. 98-102, 2009.

Jing Wen, Xinbo Gao, Yuan Yuan, Dacheng Tao, and Jie Li, “Incre-
mental tensor biased discriminant analysis: A new color-based visual
tracking method,” Neurocomputing, vol. 73, no. 4, pp. 827-839, 2010.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

1980

Boris Babenko, Ming-Hsuan Yang, and Serge Belongie, “Visual track-
ing with online multiple instance learning,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 1EEE,
2009, pp. 983-990.

Jodo F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista,
“High-speed tracking with kernelized correlation filters,”  arXiv
preprint arXiv:1404.7584, 2014.

Michele Stoppa Loris Bazzani Dong Seon Cheng, Marco Cristani and
Vittorio Murino, “Custom pictorial structures for re-identification,” in
British Machine Vision Conference (BMVC), 2011, p. 68.1C68.11.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol, “Extracting and composing robust features with denoising
autoencoders,” in Proceedings of the 25th international conference on
Machine learning. ACM, 2008, pp. 1096-1103.

Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang, “Linear
spatial pyramid matching using sparse coding for image classification,”
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009, pp. 1794-1801.

Kai Yu, Tong Zhang, and Yihong Gong, “Nonlinear learning using
local coordinate coding,” in Advances in neural information processing
systems, 2009, pp. 2223-2231.

Robert Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267-288, 1996.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders,
“Atomic decomposition by basis pursuit,” SIAM journal on scientif-
ic computing, vol. 20, no. 1, pp. 33-61, 1998.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al.,
“Least angle regression,” The Annals of statistics, vol. 32, no. 2, pp.
407-499, 2004.

Krishnakumar Balasubramanian, Kai Yu, and Guy Lebanon, “Smooth
sparse coding via marginal regression for learning sparse representa-
tions,” in ICML (3), 2013, pp. 289-297.

David L Donoho, “For most large underdetermined systems of linear
equations the minimal 11-norm solution is also the sparsest solution,”
Communications on pure and applied mathematics, vol. 59, no. 6, pp.
797-829, 2006.

Jianqing Fan and Jinchi Lv, “Sure independence screening for ultrahigh
dimensional feature space,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 70, no. 5, pp. 849-911, 2008.

Christopher R Genovese, Jiashun Jin, Larry Wasserman, and Zhigang
Yao, “A comparison of the lasso and marginal regression,” The Jour-
nal of Machine Learning Research, vol. 98888, no. 1, pp. 2107-2143,
2012.

Amit Adam, Ehud Rivlin, and Ilan Shimshoni, “Robust fragments-
based tracking using the integral histogram,” in Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on.
IEEE, 2006, vol. 1, pp. 798-805.

Robert T Collins, “Mean-shift blob tracking through scale space,” in
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on. IEEE, 2003, vol. 2, pp. I1-234.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Win-
n, and Andrew Zisserman, “The pascal visual object classes (voc) chal-
lenge,” International journal of computer vision, vol. 88, no. 2, pp.
303-338, 2010.



