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ABSTRACT

This paper proposes an multilinear discriminant analysis net-
work (MLDANet) for the recognition of multidimensional
objects, knows as tensor objects. The MLDANet is a variation
of linear discriminant analysis network (LDANet) and prin-
cipal component analysis network (PCANet), both of which
are the recently proposed deep learning algorithms. The ML-
DANet consists of three parts: 1) The encoder learned by
MLDA from tensor data. 2) Features maps obtained from de-
coder. 3) The use of binary hashing and histogram for feature
pooling. A learning algorithm for MLDANet is described.
Evaluations on UCF11 database indicate that the proposed
MLDANet outperforms the PCANet, LDANet, MPCA+LDA,
and MLDA in terms of classification for tensor objects.

Index Terms— Deep learning, MLDANet, PCANet, L-
DANet, tensor object classification

1. INTRODUCTION

One key ingredient for the success of deep learning in visual
content classification is the utilization of convolution archi-
tectures [1, 2, 3], which are inspired by the structure of human
visual system [4]. A convolution neural network (CNN) [2]
consists of multiple trainable stages stacked on the top of each
other, following a supervised classifier. Each stage of CNN is
organized in two layers: convolution layer and pooling layer.

Recently, Chan et al. [5] proposed a new convolutional ar-
chitecture, namely, principal component analysis network (P-
CANet), which uses the most basic operation (PCA) to learn
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the dictionary in the convolution layer and the pooling lay-
er is composed of the simplest binary hashing and histogram.
The PCANet leads to some pleasant and thought-provoking
surprises: such a basic network has achieved the state-of-the-
art performance in many visual content datasets. Meanwhile,
Chan et al. [5] proposed linear discriminant analysis network
(LDANet) as a variation of PCANet.

However, PCANet and LDANet are deteriorated when
dealing with visual content, which is naturally represent-
ed as tensor objects. That is because when using PCANet
or LDANet, the multidimensional patches, taken from visual
content, are simply converted to vector to learn the dictionary.
It is well known that vector representation of patches breaks
the natural structure and correlation in the original visual
content. Moreover, it may also, suffers from the so-called
curse of dimensionality [6].

Recently, there is growing interest in the tensorial exten-
sion of deep learning algorithms. Yu et al. [7] proposed deep
tensor neural network, which can be seen as a tensorial ex-
tension of deep neural network (DNN), outperforms DNN in
large vocabulary speech recognition. Hutchinson et al. [8] p-
resented the tensorial extension of deep stack neural network,
which has been successfully used in MNIST handwriting im-
age recognition, phone classification, etc. However, the simi-
lar tensorial extension research has not been reported for deep
learning algorithms with convolutional architecture.

In this paper, we propose a simple deep learning algorith-
m for tensor object classification, that is, multilinear discrim-
inant analysis network, which is a tensorial extension of P-
CANet and LDANet. The simulation on UCF11 database [9]
demonstrates that the MLDANet outperforms PCANet and L-
DANet in terms of classification accuracy for tensor objects.

2. REVIEW OF MLDA

In this section, we briefly review MLDA [10], which is a mul-
tilinear extension of LDA. The MLDA obtains discriminative
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Fig. 1. The process of elementary multilinear projection (EM-
P).

Fig. 2. Tensor-to-vector projection (TVP).

features through maximizing the Fisher’s discrimination cri-
terion, which is described as follows.

An N th tensor object is denoted as X ∈ RI1×I2×···×IN .
It is addressed by N indices in, n = 1, 2, . . . , N , and each in
addresses the n-mode of X . The n-mode tensor product of X
by a matrix U ∈ RJn×In is defined as:

(X×nU)(i1,...,in−1,jn,in+1,...,iN )=
∑
in

X(i1,...,iN )·U(jn,in). (1)

The projection from tensor X ∈ RI1×I2×···×IN to a s-
calar y can be described as follows:

y = X×1u(1)T×2u(2)T · · · ×Nu(N)T (2)

where {u(n)T }Nn=1 is a set of unit projection vectors. This ten-
sor to scalar projection is called elementary multilinear pro-
jection (EMP), which consists of one projection vector in each
mode. An EMP of a tensor X ∈ RI1×I2×I3 is illustrated in
Fig. 1.

The tensor-to-vector projection (TVP) from a tensor X ∈
RI1×I2×···×IN to a vector y ∈ RP is to find a vector set
{u(n)T

p , n = 1, . . . , N}Pp=1, which are able to do P times EM-
P. The process can be described as:

y = X ×N
n=1 {u(n)T

p , n = 1, . . . , N}Pp=1, (3)

whose pth component is obtained from the pth EMP as y(p) =

X×1u(1)T

p ×2u(2)T

p · · · ×Nu(N)T

p . Fig. 2 shows the schematic
plot for TVP.

Suppose that we are given M input tensor objects,
{Xm}Mm=1 ∈ RI1×···×IN , which contains C classes. The
pth projected scalar of {Xm}Mm=1 are defined as {ymp

}Mm=1,

where ymp
= Xm×N

n=1 {u
(n)T

p }Nn=1. So the between-class s-
catter matrix and the within-class scatter matrix for pth scalar

Tensor object
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Fig. 3. The architecture of two-stage MLDANet.

tensor objects are defined as follows, respectively:

Sy
Bp

=

C∑
c=1

Nc(ȳcp − ȳp)2, Sy
Wp

=

M∑
m=1

(ymp
− ȳcmp

)2, (4)

where ȳp = (1/M)
∑

mymp
, ȳcp = (1/Nc)

∑
m∈cymp

, C is
the number of classes, Nc is the number of tensor objects in
class c, and cm is the class label for the mth tensor objec-
t. Thus, the Fishers Discriminant criterion for the pth scalar
tensor objects is F y

p = Sy
Bp

/Sy
Wp

. The objective of MLDA

is to determine a set of P EMPs {u(n)T

p , n = 1, . . . , N}Pp=1

satisfying the following conditions:

{ u(n)T

p , n = 1, . . . , N} = arg maxF y
p

(5)

3. THE ARCHITECTURE OF MLDANET

Fig. 3 shows the architecture of MLDANet for third-order
tensor objects classification. It contains two convolutional
layers and one pooling layer. The filter bank in each convolu-
tional layer is learned independently. We use binary hashing
and histogram as pooling operation for the features extracted
from the first two convolutional layers.

3.1. The first stage of MLDANet

For the given M third-order tensor objects {Xm}Mm=1 ∈
RI1×I1×I3 , which contains C classes, we take tensor patch-
es around the 1-mode and 2-mode by taking all 3-mode
elements of mth tensor object, i.e., the tensor patch size
is k1 × k2 × I3, we collect all (overlapping) I1 × I2 ten-
sor patches from Xm. The tensor patches have the same
class with Xm. We put these tensor patches into a set
tm = {tm,q ∈ Rk1×k2×I3}I1×I2q=1 . By repeating the above
process for every tensor objects, we can get all tensor patches
t = {tm}Mm=1 for learning filter bank in the first stage.

Let L1 be the number of filters in the first stage. We apply
MLDA to t to learn the L1 vector sets {u(1)

p ,u(2)
p ,u(3)

p }L1
p=1.
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Each tensor patch is converted into L1 scalars by using
{u(1)

p ,u(2)
p ,u(3)

p }L1
p=1. Thus, the lth feature map of tensor

object Xm in the first stage is defined as:

Fml = mat(tm,q ×3
n=1 {u

(n)T

l }) ∈ RI1×I2 ,

q = 1, . . . , I1 × I2,
(6)

where mat(v) is a function that maps v ∈ RI1I2 on a matrix
F ∈ RI1×I2 .

For each tensor object, we can obtain L1 feature map-
s of size I1 × I2. We denote these feature maps of mth
tensor object in the first stage with {Fml ∈ RI1×I2 , l =
1, . . . , L1}Mm=1. The feature maps of each tensor object cap-
ture the main variation of original data.

3.2. The second stage of MLDANet

Through the first stage, the tensor object is already mapped
into low-dimensional tensor feature, the dimension of the 3-
mode is much lower than that of the 1-mode and 2-mode. That
is to say, the redundancy of 3-mode has been greatly reduced.
Therefore, for the simplicity of computation and the conve-
nience of building network, we use the conventional LDA in
the second stage to learn the filter bank. The number of filters
in the second stage is L2.

Around each pixel, we take a k1 × k2 patch, and col-
lect all (overlapping) patches of all the feature maps Fml,
i.e., {rml,q}I1×I2q=1 ∈ Rk1×k2 where each rml,q denotes the
qth vectorized patch in the lth feature map of mth tensor ob-
ject. We then subtract the patch mean from each patch, and
construct the matrix Rml = [rml,1, rml,2, . . . , rml,I1×I2 ] for
them, where Rml belongs to the same class with the mth ten-
sor object. Let Sc is the set of matrix Rml in class c. We
then compute the class mean Γc and the mean of class Γ as
follows:

Γc =
∑

ml∈Sc

Rml/ |Sc| , Γ =
∑
∀ml

Rml/ML1. (7)

So, the within-class scatter matrix and the between-class
scatter matrix are defined respectively as follows:

SW =

C∑
c=1

(
∑

ml∈Sc

(Rml − Γc)(Rml − Γc)
T
/ |Sc|), (8)

SB =

C∑
c=1

(Γc − Γ)(Γc − Γ)T /C. (9)

We then get w∗ ∈ Rk1k2×L2 by maximizing the Fisher’s
discriminant criterion as follows:

w∗ = arg max
w

Tr(wTSBw)

Tr(wTSW w)
, s.t. wT w = IL2

. (10)

By using mat function, each column of w∗ is converted into
matrix {vh ∈ Rk1×k2}L2

h=1. These matrices are treated as the

filter bank in the second stage. Let the hth output of the lth
feature map for the mth tensor object in the second stage be

Gmlh = Rml ∗ vh, h = 1, . . . , L2, l = 1, . . . , L1, (11)

where ∗ denotes 2D convolution [2], and the boundary of Rml

is zero-padded before convolving with vh so as to make Gmlh

have the same size as Rml. The number of output feature
maps of the second stage is L1L2. One or more additional
stages can be built if a deep architecture is found to be bene-
ficial.

3.3. The pooling layer in MLDANet

First, we binarize each feature map by using Heaviside step
function H(·), whose value is one for positive entries and
zero otherwise. The binarized feature maps are denoted by
Ḡmlh ∈ {0, 1}I1×I2 . Owing to every feature map capture d-
ifferent variations by vh. Ḡmlh should be weighted to convert
into a single integer-valued feature map:

Wml =

L2∑
h=1

2h−1Gmlh. (12)

note that each entry of feature map Wml are integers in the
range [0, 2L2−1].

Next, we partition Wml into B blocks, and then compute
the histogram (with 2L2 bins) of the decimal values in each
block. All the B histograms are concatenated into one vector
as the lth feature vector Bhist(Wml) of tensor object Xm.
The final feature of input tensor object Xm is then defined as
the set of feature vector, i.e.,

fm=[Bhist(Wm1), Bhist(Wm2), . . . , Bhist(WmL1)]. (13)

Note that the local block can be either overlapping or non-
overlapping depending on applications [5].

4. EXPERIMENTAL RESULTS

We evaluate the performance of MLDANet on UCF11 dataset
for tensor object classification. UCF11 is a sport action video
dataset which contains 11 action categories: basketball shoot-
ing, biking, diving, golf swinging, horseback riding, soccer
juggling, swinging, tennis swing, trampoline jumping, vol-
leyball spiking, and walking with a dog. All videos in UCF11
are manually collected from YouTube and their sizes are all
240 × 320 pixels. For each category, the videos are grouped
into 25 groups with more than 4 action clips in it. The video
clips in the same group have common scenario. This video
dataset is very challenging in classification due to large vari-
ations in camera motion, object appearance and pose, object
scale, viewpoint, cluttered background, illumination, etc.

In this experiment, we only choose the first ten groups in
each category. The total number of experimental videos is
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Fig. 4. (a)-(c): Recognition rate of networks in different patch
size. (d) are the performance of MPCA+LDA and MLDA

642. For each group, half videos are randomly selected for
training and others for testing. Every video is resized to 48×
64 in order to reduce the computational complexity. Almost
every videos have variation in frames. For those frame larger
than 20, we only choose the first twenty frames. For a few
videos, whose frames are less than 20, we just copy the last
frame to fill them.

We then compare the proposed MLDANet with PCANet
[5], LDANet [5], MPCA+LDA [11], and MLDA [10]. The
model parameters of MLDANet, PCANet, and LDANet all
include the patch size k1 × k2, the number of filters in each
stage L1, L2, the number of stages, overlapping ratio of block,
and the block size. Chan et al. [5] have shown that the ap-
propriate number of filters L1, L2 in PCANet and LDANet
is L1 = L2 = 8. By considering that MLDA is the ten-
sorial extension of conventional LDA. Thus, we always set
L1 = L2 = 8 for all networks. The patch size k1 × k2 are
changed from 3 × 3 to 7 × 7 and three block sizes 6 × 8,
12 × 16, 24 × 32 are considered here. The overlapping ratio
is set to 50%. Unless stated otherwise, we use linear SVM
classifier. The recognition rates of above networks averaged
over 5 different random splits are shown in Fig. 4 (a)-(c).

For conventional tensor object classification by using MP-
CA+LDA, we change the dimensions of input feature of LDA
from 10 to 100. The dimensions of feature vector extract-

Methods Accuracy
MLDANet-1 64.55
MLDANet-2 78.93
LDANet-1 73.58
LDANet-2 76.59
PCANet-1 58.68
PCANet-2 76.92

MPCA+LDA 45.15
MLDA 38.46

Table 1. The best performance of MLDANet, LDANet, P-
CANet, MPCA+LDA and MLDA.

ed from MLDA vary from 10 to 100. We draw the recog-
nition accuracy of MPCA+LDA and MLDA in Fig. 4(d).
The best performance of MLDANet, PCANet, LDANet, MP-
CA+LDA, and MLDA are listed in Table 1.

We see that all one-stage networks outperform two con-
ventional tensor object classification algorithms, that is, M-
PCA+LDA and MLDA. The reason is that the convolution-
al architecture imitate the brain networks, which can provide
more robust feature than other methods for visual content [4].
LDANet-1 achieves the best performance in the one-stage
networks, but the improvement from LDANet-1 to LDANet-2
is not larger as that of MLDANet. PCANet-1 performs worse
than those based on LDA algorithm networks like LDANet
and MLDANet. It is because that LDA type algorithm pro-
vides the features which have the best classification perfor-
mance, however, PCA maximize the directional variation in
the features. MLDANet-1 is not as good as LDANet-1 be-
cause the feature extracted from MLDANet-1 is not appropri-
ate as the direct input of linear SVM. For two-stage network-
s, MLDANet-2 achieves the best performance. Surprisingly,
the performance of PCANet-2 increase not more than 18.24%
compared to that of PCANet-1, but it is better than that of
LDANet-2.

5. CONCLUSION

In this paper, we have proposed and implemented a novel
deep learning architecture, that is, MLDANet, which takes
full advantage of the structure information in tensor objects
by convolutional architecture. MLDANet is composed of t-
wo convolutional layers, which use MLDA and LDA to learn
filter banks respectively and one pooling layer. We have e-
valuated the performance of the MLDANet on UCF11 and
show that our model performs well in tensor object classifica-
tion. This work provides the inspiration for other convolution-
al deep architectures in tensor object classification. As future
works, we will focus on the tensorial extension of CNN.

1974



6. REFERENCES

[1] Y. Bengio, “Learning deep architectures for AI,” Foun-
dations and trends R© in Machine Learning, vol. 2, pp.
1–127, 2009.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278–2324,
1998.

[3] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Proceedings of NIPS, 2012, pp. 1097–1105.

[4] Y. LeCun and Y. Bengio, “Convolutional networks for
images, speech, and time series,” The handbook of brain
theory and neural networks, vol. 3361, 1995.

[5] T.H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “P-
canet: A simple deep learning baseline for image classi-
fication?,” arXiv preprint arXiv:1404.3606, 2014.

[6] G. Shakhnarovich and B. Moghaddam, “Face recogni-
tion in subspaces,” Handbook of Face Recognition, pp.
19–49, 2011.

[7] D. Yu, L. Deng, and F. Seide, “The deep tensor neu-
ral network with applications to large vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, pp. 388–396, 2013.

[8] B. Hutchinson, L. Deng, and D. Yu, “Tensor deep s-
tacking networks,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 35, pp. 1944–1957,
2013.

[9] “UCF11,” http://crcv.ucf.edu/data/.

[10] H. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos,
“Uncorrelated multilinear discriminant analysis with
regularization and aggregation for tensor object recog-
nition,” IEEE Transactions on Neural Networks, vol.
20, pp. 103–123, 2009.

[11] H. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, “M-
pca: Multilinear principal component analysis of tensor
objects,” IEEE Transactions on Neural Networks, vol.
19, pp. 18–39, 2008.

1975


