
DISCRIMINATIVE SPECTRAL LEARNING OF HIDDEN MARKOV MODELS FOR HUMAN
ACTIVITY RECOGNITION
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ABSTRACT

Hidden Markov Models (HMMs) are one of the most impor-
tant techniques to model and classify sequential data. Max-
imum Likelihood (ML) and (parametric and non-parametric)
Bayesian estimation of the HMM parameters suffers from lo-
cal maxima and in massive datasets they can be specially time
consuming. In this paper, we extend the spectral learning of
HMMs, a moment matching learning technique free from lo-
cal maxima, to discriminative HMMs. The resulting method
provides the posterior probabilities of the classes without ex-
plicitly determining the HMM parameters, and is able to deal
with missing labels. We apply the method to Human Activ-
ity Recognition (HAR) using two different types of sensors:
portable inertial sensors, and fixed, wireless binary sensor net-
works. Our algorithm outperforms the standard discrimina-
tive HMM learning in both complexity and accuracy.

Index Terms— Hidden Markov Models, Spectral algorithm,
Discriminative learning, Observable operator models, Human activ-
ity recognition

1. INTRODUCTION

Hidden Markov Models (HMMs) have been applied to a wide
range of sequence modelling problems like speech recogni-
tion, Human Activity Recognition (HAR) or time series anal-
ysis [1]. The Expectation-Maximization (EM) algorithm is
the classical method used to learn the parameters of HMMs
[2]. However, it exhibits two main problems: 1) the like-
lihood is multimodal so the EM is guaranteed to converge
only to a local maxima, and 2) although the complexity of
the algorithm growths linearly with the length of the training
sequence, the multiple initializations required for minimiz-
ing the effects of the local convergence and the more than
quadratic growth with the number of hidden states makes EM
computationally heavy with large training datasets. Bayesian
inference methods including Gibbs sampling [3], variational
optimization [4], or Bayesian non-parametric methods [5] are
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even computationally heavier and global convergence is still
not guaranteed.
The authors in [6] propose a spectral algorithm for learning
HMMs with discrete observations. Basically, the method ad-
justs the model by moment matching instead of maximizing
the likelihood, and it relies on the use of the observable opera-
tors view of the HMM [7]. They use this approach to solve the
prediction and filtering problems. Although the authors focus
on HMMs with discrete observations, there exists several ex-
tensions for continuous observations using kernels [8, 9].

The application of HMMs to the HAR problem follows
two main approaches. The first one [10] consists in learning
a unique HMM, modelling only the temporal dependencies
between different classes and assigning the same number of
hidden states and classes. This is a very simple model and
usually it must be combined with supervised learning algo-
rithms. The second one [11] consists in learning one HMM
for each possible class and then choosing the model with the
maximum likelihood for each test case. The main problem
of this approach is the need of defining a sequence size to
learn each model and to infer the test sequences. A similar
approach has been used in speech recognition where they
initially train a different HMM for each class (phoneme or
word) using the EM, and then they fine tune them discrimina-
tively [12]. A more direct approach is based on dicriminative
training of the HMM, computing directly the posterior prob-
abilities of the classes [13].
In this work, we propose a spectral algorithm for learning a
discriminative HMM with discrete observations. We extend
the work in [6] obtaining a recursive algorithm for estimating
the labels of an observation sequence. We use this approach
in two different HAR settings and we compare our results
with the discriminative HMM trained with the EM algorithm.
We will show than under the same conditions, our algo-
rithm outperforms the EM algorithm in computation time
increasing the accuracy performance. When comparing with
continuous observations, the accuracy error is slightly worse,
but again, the time computation of our algorithm dramatically
outperforms the EM.
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2. SPECTRAL ALGORITHM FOR LEARNING
HMMS

In this section, we briefly explain the spectral algorithm for
learning HMMs with discrete observations presented in [6].
Let Y ∈ {1, · · · ,M} be the hidden states of a HMM and
X ∈ {1, · · · , N} the discrete observations. The probabil-
ity transition matrix is T ∈ RM×M where Tij = p(yt+1 =
i|yt = j), the observation probability matrix is O ∈ RN×M

where Oij = p(xt = i|yt = j), the initial probabilities dis-
tribution is π ∈ RM with πi = p(y1 = i) and t is any time
instant. We can compute the probability of a sequence of ob-
servations in terms of observable operators [7] for each obser-
vation in X:

Ax = T · diag (Ox,:)

Ox,: = (Ox,1, · · · , Ox,M )

where diag(Ox,:) is a diagonal matrix with elements Ox,:.
For any t, the probability of any sequence of observations
x1:t = [x1, · · · , xt] can be written as the following product
of matrices:

P (x1:t) = 1T
MAxt · · ·Ax1π = 1T

MAxt:1π (1)

where 1M is a column vector of M ones. This expression de-
pends on the transition matrix T and the observation matrix
O of the model, but neither are known at the training stage.
If we are only interested in the value of (1) and not in the pa-
rameters of the model, we can use an invertible transformation
of this equation that only depends on observable quantities:

1T
MAxt:1

π = 1T
MS−1SAxt

S−1 · · ·SAx1
S−1Sπ

= bT
∞Bxt:1

b1 (2)

where S ∈ RM×M is the invertible transformation matrix and

bT
∞ = 1T

MS−1, Bx = SAxS
−1, b1 = Sπ

The idea of this transformation is to avoid the identification
problem of the hidden structure of the model by expressing
(2) in terms of the marginal probabilities of the vector of sin-
gletons p1 ∈ RN , matrix of pairs P21 ∈ RN×N and tensor of
triples Px

31 ∈ RN×N ,∀x. These quantities can be estimated
from the data, and they are related to the parameters of the
HMM

p1 = P (x1) = Oπ

P21 = P (x2, x1) = OTdiag (π)OT

Px
31 = P (x3, x2 = x, x1) =

= OAxTdiag (π)OT ,∀x

In [6], the authors proof that S = UTO is a valid invertible
transformation for the HMM model, where U ∈ RN×M is
the matrix of M left singular vectors of the joint probability

matrix P21. With this transformation, we can express the new
parameters of the model as:

b1 = UTp1

b∞ =
(
PT

21U
)†

p1 (3)

Bx =
(
UTPx

31

) (
UTP21

)†
,∀x

where (·)† is the Moore-Penrose pseudo-inverse operation.
To compute the spectral algorithm for learning a HMM,

first we take m i.i.d. triples [x1, x2, x3] from the training ob-
servations to obtain an estimation of p1, P21 and Px

31. Then,
we compute the SVD of P21, obtaining the matrix of M left
singular vectors U. Finally, we compute the HMM trans-
formed parameters in (3).

3. SPECTRAL ALGORITHM FOR LEARNING
DISCRIMINATIVE HMMS

The algorithm in Section 2 can be used to obtain the probabil-
ity of a sequence of observations or the probability of the last
observation given all the previous ones. However, the focus of
this work is the classification of a sequence of discrete labels
given the observations, using the discriminative HMM model
in Figure 1. We want to solve 1) the problem of predicting
the probability of a sequence of labels given the observations
and 2) the problem of predicting the conditional probability
of a label given all the previous labels and observations.

y1

l1 x1

y2

l2 x2

· · · yt

lt xt

· · ·

Fig. 1. Discriminative HMM graphical model of a sequence
of t observations x1:t and labels `1:t

Let L ∈ {1, · · · ,K} be the alphabet of labels of the
model and D ∈ RK×M the label probability matrix where
Dij = p(`t = i|yt = j). We define the joint probability of a
sequence of labels `1:t and observations x1:t as in (1)

P (`1:t, x1:t) = 1T
MA`txt · · ·A`1x1π (4)

where the label and observation operators are

A`txt
= Tdiag(D`t,:)diag(Oxt,:) (5)

We have NK label and observation operators, the combina-
tion of all its possible values. In this discriminative HMM
model, the labels and the observations are independent given
the hidden states, so we can define for simplicity a joint label-
observation matrix F ∈ RNK×M where

Fijk = P (`t = i|yt = k)P (xt = j|yt = k) = DikOjk
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and from (5), our new operators are A`txt = Tdiag(F`txt,:).

To solve the first problem, we compute the probability of a
sequence of labels given the observations applying the Bayes
Theorem and combining the expressions (1) for the denomi-
nator and (4) for the numerator:

P (`1:t|x1:t) =
P (`1:t, x1:t)

P (x1:t)
=

1T
MA`txt

· · ·A`1x1
π

1T
MAxt

· · ·Ax1
π

(6)

We are again only interested in the value of (6), and not in the
values of the matrices T, O and D. We can apply an invert-
ible transformation in the numerator and the denominator of
this expression so it only depends on the training observations
and labels. We follow Section 2 to obtain the denominator,
and we use an invertible transformation matrix R ∈ RNK×M

as in (2) to obtain the numerator:

1T
MA`t:1xt:1π = cT∞C`t:1xt:1c1

where A`t:1xt:1
is the product A`txt

· · ·A`1x1
and

cT∞ = 1T
MR−1, C`x = RA`xR

−1, c1 = Rπ (7)

We want to represent the numerator in (6) in terms of the ob-
servable vector q1 ∈ RNK , matrix Q21 ∈ RNK×NK and
tensor Q`x

31 ∈ RNK×NK ,∀`, x. Also, these observable quan-
tities can be expressed in terms of the hidden parameters of
the model.

q1 = P (`1, x1) = Fπ

Q21 = P (`2, x2, `1, x1) = FTdiag (π)FT

Q`x
31 = P (`3, x3, `2 = `, x2 = x, `1, x1) =

= FA`xTdiag (π)FT

From [6] it is straightforward to proof that R = VTF is a
valid invertible transformation matrix for the model, where V
is the matrix of left singular vectors of Q21. We can calculate
the transformed parameters of the model in (7) in terms of V
and these observable quantities:

c1 = VTq1

c∞ = (QT
21V)†q1

Clx = (VTQ`x
31)(V

TQ21)
†,∀`, x

To solve the second problem, we use the Bayes Theorem
to express the conditional probability of a label `t given the
all the previous labels `1:t−1 and all the observations x1:t

P (`t|`1:t−1, x1:t) =
cT∞C`t:1xt:1

c1
bT
∞BxtZC`t−1:1xt−1:1c1

(8)

where Z = (UTO)(VTF) is the transformation term be-
tween Bxt

and C`t−1xt−1
. We can further express Z in terms

of an additional observable operator W21 ∈ RN×NK

W21 = P (x2, `1, x1) = OTdiag (π)FT

Z = (UTW21)(V
TQ21)

†

Finally, equation (8) can also be represented recursively as
follows:

P (`t|`1:t−1, x1:t) =
cT∞C`txt

ct∑
` c

T
∞C`xt

ct

ct+1 =
C`txt

ct
bT
∞Bxt+1

ZC`txt
ct

(9)

We describe the spectral algorithm to solve both classifica-
tion problems for discriminative HMMs in Algorithm 1. It is
interesting to notice that this algorithm can also handle miss-
ing labels in the training. If we take a triple {x1, x2, x3} with
missing labels, we can just actualize p1, P21 and Px

31 without
changing the other operators and proceed normally.

Algorithm 1 Spectral Algorithm for discriminative HMMs
Input:

Number of hidden states M and labels K.
Sample size N
m i.i.d. groups of triples {x1, x2, x3} and {`1, `2, `3},
Test sequence x1:t

Output: P (`t|`1:t−1, x1:t)

1. Compute the empirical estimates of p̂1, P̂21, P̂x
31, q̂1,

Q̂21, Q̂`x
31 and Ŵ21.

2. Compute both the SVD of P̂21 to get the matrix ofM
left singular vectors Û and the SVD of Q̂21 to get the
matrix of M left singular vectors V̂.

3. Compute the transformed HMM model quantities b̂1,
b̂∞, B̂x, ĉ1, ĉ∞, Ĉ`x and Ẑ.

4. Compute sequentially for all t the probabilities of the
labels `1:t using (9).

4. RESULTS

4.1. Inertial sensors database

In the first experiment, we use a HAR database obtained using
miniature inertial sensors from APDM [14], which provide
acceleration, gyroscope and magnetometer data. 18 different
people were used as subjects for the experiments and only
one sensor was placed at the waist of each of them. Then,
they were asked to perform a sequence of activities, that were
combinations of running, walking, standing, sitting and ly-
ing, in no particular order. Also, the data was processed to
make it invariant to sensor orientation, following the work in
[15]. The bottleneck of the spectral algorithm is the compu-
tation of the SVD. However, we can overcome this problem
by substituting the SVD by a random normalized matrix and
a regularization step, following the work in [16].
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Fig. 2. Accuracy error of the activity classification using a
clustering classification, the discriminative HMM with the
EM algorithm, both with continuous and discrete observa-
tions, and the discriminative HMM with spectral learning and
discrete observations.

To evaluate our algorithm, we get 1000 random unique
observations as centroids from the training data and assign
each observation to one of these centroids according to the
minimum euclidean distance. We re-estimate the centroids
100 times getting the mean accuracy error for each case1.
Also, the number of centroids for each activity is proportional
to the number of training observations of each activity. We
perform a leave-one-out strategy, where we use 17 sequences
of activities as training and one sequence as test to evaluate
the performance of the algorithms. The number of hidden
states is set to M = 25. For the EM algorithm, we per-
form 5 iterations of the algorithm with k-means initialization.
We consider two different EMs, one with continuous obser-
vations, assuming that the probability of the observations is a
Mixture of Gaussians (MoG) and the other one with the same
discrete observations as with the spectral case. We include the
results from performing clustering on the observations using
the minimum euclidean distance as a baseline performance.

In Figure 2 we show the comparison of all the methods for
each leave-one-out case. We observe that the accuracy error
for the MoG EM is in mean 3.39% better than in the spectral
learning. Also, the discrete EM algorithm performs a 1.40%
worse than the spectral learning algorithm. We can conclude
that the reason for the loss in accuracy is due to the use of dis-
crete observations. In fact, under the same assumptions, the
absence of local minima in the spectral algorithm results in a
better performance.
The most important point of this comparison is the drastic dif-
ference in computation time. The EM algorithm requires mul-
tiple initializations to avoid the local minima. Furthermore,
the EM algorithm is a recursive algorithm with the number of
observations, meanwhile this restriction is not present in the

1The standard deviation for all the cases is less than 0.04.

spectral algorithm. In particular, in a 2.5 Ghz Intel Core i5
processor with Matlab and C for the recursive section of the
EM, 30.9 minutes are needed in the training step for one of
the sequences of the leave-one-out case, while in the spectral
algorithm case implemented exclusively in Matlab, only 1.37
seconds are needed.

4.2. Binary sensors database

In the second experiment, we have used the databases with
discrete observations generated by the authors in [17]. They
implemented a binary sensor network in three different home
environments to detect several events, like movement of ob-
jects or motion in a specific area. They placed 14, 23 and 21
sensors in each house respectively and they tagged between
10 and 16 activities. We use the last-fired feature representa-
tion of the database, where a sensor remains activated as long
as another sensor is not activated. We compare the results of
the HMM using the EM algorithm with the spectral algorithm
for each of the three settings in terms of the accuracy error in
Table 1. We can see that our spectral algorithm obtains better
results in the first two houses while performing worse in the
other one.

House HMM+EM Spectral HMM
A 0.105 0.053
B 0.516 0.332
C 0.161 0.227

Table 1. Accuracy error of the activity classification using
both the discriminative HMM with the EM algorithm and the
discriminative HMM with spectral learning and discrete ob-
servations.

5. CONCLUSIONS

In this work, we have proposed a spectral algorithm for learn-
ing a discriminative HMM with discrete observations. Our al-
gorithm exhibits a similar performance as the continuous ob-
servations HMM while dramatically outperforming it in terms
of time computation. Also, it performs better in general than
the discrete HMM, leading to the hypothesis that the loss of
accuracy is due to the discreteness of the observations, not
to the spectral algorithm implementation. The low compu-
tation time and complexity and the possibility of obtaining
directly the probability of the labels make it useful for on-line
tracking problems, e.g. human on-line activity recognition
applications. In the future, we will try to extend this spectral
algorithm for discriminative HMMs with continuous observa-
tions and for other models where the large amount of training
data make iterative methods prohibitive.
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