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ABSTRACT
Recent studies in computer vision have provided new solu-
tions to real-world problems. In this paper, we focus on using
computer vision methods to assist in the study of kangaroos in
the wild. In order to investigate the feasibility, we built a kan-
garoo image dataset from collected data from several national
parks across the State of Queensland. To achieve reason-
able detection accuracy, we explored a multi-pose approach
and proposed a framework based on the state-of-the-art De-
formable Part Model (DPM). Experiments show that the pro-
posed framework outperformed the state-of-the-art methods
on the proposed dataset. Also, the proposed vision tools are
able to help our field biologists in studying kangaroo related
problems such as population tracking for activity analysis.

Index Terms— Object detection, animal, kangaroo, pop-
ulation tracking, DPM

1. INTRODUCTION

Monitoring animal populations and activities has significance
for biology and ecology [1]. In uncontrolled field work envi-
ronments like desert, forest or sea, it is desirable to develop
computer vision tools to perform the surveillance tasks au-
tomatically instead of performing manual field observation.
These automated tools could help biologists to perform much
more efficient and cost effective field studies.

Performing vision tasks on wild animals can be very chal-
lenging due to the complex background, varying illumination,
occlusion and the multiple shapes and poses of the animals.
In addition, the task is usually an open set problem. To illus-
trate this, we present an example for the kangaroo detection
task in Fig. 1. The figure shows both a successful detection
and a false alarm. Although we confine ourselves to kanga-
roos, there are also some other animals such as emus, wild
pigs, cats and dingos that are captured by the cameras. Thus,
it is nearly impossible to include all possible animals that are
not of interest during the training phase.

There have been several works that are related to animal
images [2][3][4]. For instance, in [2], attribute based detec-
tion are studied for unseen animal detection and the authors
also propose an animal dataset with attribute labels. Fine-
grained classification for cats and dogs are explored in [3].
They use DPM to detect animal face and bag-of-words to de-
scribe the animal pattern. In [4], shape and texture features

are extracted for cat’s head detection. Unfortunately, most
prior works were not primarily focussed on field work set-
tings. The images are often collected from internet; makes
these completely orthogonal to the focus of our work. In con-
trast to these works, we collected our kangaroo images from
cameras mounted in the wild. Because of this, the images in
our data is often in low resolution and occluded due to the
varying poses.

(a) (b)

Fig. 1. Kangaroo detection with bounding-boxes. The left
one is a correctly detection and the right one is a false alarm.

Perhaps the most closely related works are works pro-
posed in [5, 6]. In [5], authors analyse the data collected in the
wild of Kenya for animal identification. They use the standard
SIFT features to perform the task. In [6], the authors work on
animal recognition where the data are collected from the Mo-
jave desert. They also use the simple SIFT-based method to
assist the field biologist for an animal population study. How-
ever, the animals they studied are not extremely deformable
like the kangaroo; thus, this task is significantly easier.
Contributions Our main contributions can be listed as fol-
lows: (1) we describe and propose a Kangaroo detection
dataset which will be useful for practitioners in the field to
develop their algorithms; (2) we propose an extension of
DPM to address problems in Kangaroo detection; (3) we
demonstrate that our proposed tools could be used to assist in
the study of Kangaroos.

We continue this paper as follows. In Section 2, we pro-
pose the kangaroo dataset and show some samples. In Sec-
tion 3, we describe the kangaroo detection problem and the
proposed method in details. Experiments and analysis are
given in Section 4. The conclusion and possible future di-
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rections are summarized in Section 5.

2. KANGAROO DATASET

Our data were collected in several national parks across
Queensland State during 2013. In order to monitor wild ani-
mals for a long time, we used the RECONYX camera system
as shown in Fig. 2. This camera works in both day and night
conditions and has a long battery life. The camera is cam-
ouflaged to match tree branches to avoid aggression from
the animals. We set up the cameras in front of the feeding
locations to get a clear view of the animals. The cameras
work on a low frame-rate to avoid high storage consumption.
The collected videos were pre-processed and nearly 3,000
frames were extracted from each location. We present some
examples in Fig. 3.

Fig. 2. RECONYX Camera.

We discarded the frames that contain only background
and blurry images. After these frames were discarded, we ex-
tracted 1,900 cropped images to build the kangaroo dataset.
The dataset contained 250 positive samples and 450 negative
samples for training. The test set comprised 600 positive sam-
ples and 600 negative samples. We opted to use the True Pos-
itive Rate (TPR), False Positive Rate (FPR) and Average Pre-
cision (AP) as the performance metrics. These are calculated
from the True Positive (TP), False Positive (FP), True Nega-
tive (TN) and False Negative (FN) as follows. TPR = TP

TP+FN
, FPR = FP

FP+TN , and AP = TP+TN
TP+FP+TN+FN . All positive train-

ing samples were labelled with a bounding box in the XML
format. The dataset will be available for download at http:
//www.itee.uq.edu.au/sas/datasets.

3. PROPOSED VISION TOOLS

Unlike most object detection tasks, kangaroo detection pos-
sesses markedly more difficult challenges as kangaroos could
have multiple poses and extremely deformed body (e.g. a
Kangaroo could significantly twist their body). Significant
variations to illuminant and background also exist due to the
uncontrolled natural environment. Fig. 4 provides some ex-
amples of kangaroos in different poses. Significant appear-
ance differences in various poses present difficulties in the
detection task.

Despite the challenges, from our empirical observation,
one of the state-of-the-art methods called, Deformable Part

(a) (b)

(c) (d)

Fig. 3. Sample frames from collected frames. (a): Kangaroo
jumping, (b): Emus walking, (c): Kangaroo standing, (d):
Kangaroos eating in the night.

(a) (b) (c)

Fig. 4. Different poses of kangaroo. (a): Kangaroo showing
its back to the fixed camera, (b): Kangaroo showing its frontal
body, (c):Kangaroo showing its left part of the body

Model based object detection method, can achieve quite rea-
sonable detection accuracy. This could be due to the fact that
the core idea of DPM is to capture the variation in an object’s
appearance. The model is defined by a coarse root filter, sev-
eral higher resolution part filters and a spatial model for the
location of each part relative to the root [7]. The spatial model
captures the varying appearance of objects in the same class.
More precisely, Let I ∈ Rk×l be an image region extracted in
sliding window manner; H ∈ Rk×l be the HOG [8] feature
map; p denotes a location (x, y) in H and w0 ∈ Rw×h be
a w × h filter. Let φ(p,H, w, h) denote the vector obtained
by concatenating the feature vectors in the w×h sub-window
of H with top-left corner at p in row-major order. Then the
filter score of w0 at location p is w>0 φ(p,H, w, h). Simi-
larly, the i-th part is defined by filter wi and di ∈ R4 is a
four dimensional vector specifying coefficients of a quadratic
function defining a deformation cost for each possible place-
ment of the part. For clarity, we will shorten the expression
φ(p,H, w, h) to φ(p,H). An object hypothesis can be rep-
resented by {p0,p1, · · · ,pn} where p0 is the root location
and pi is the location of the i-th part. The sliding image win-
dow containing the hypothesis is I . Finally, the score of a
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hypothesis inH is given

Φdpm(I, {pi}i=n
i=0 ) = w>0 φ(p0,H) +

n∑
i=1

w>i φ(pi,H)

− d>i λd(pi,p0) + b (1)

where λd(·) is the deformation feature defined by the deriva-
tions of the pixel distance between pi = (xi, yi) and p0 =
(x0, y0). Specifically,

λd(pi,p0) = (dxi, dyi, dx
2
i , dy

2
i ) (2)

where (dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) gives the dis-
placement of the i-th part relative to its anchor position vi.
The vector vi is a two-dimensional vector specifying an an-
chor position for part i relative to the root position. The bias
term b is introduced to make the scores of multiple models
comparable. When it comes to detection, the location of parts
are inferred by maximizing the part appearance scorew>i φ(·)
minus the deformation cost in Eqn. 3. Interested readers are
referred to [7] for a full treatment of DPM.

pi = argmax
pi

w>i φ(pi,H)− d>i λd(pi,p0) (3)

where pi traverses possible locations of the part.
DPM is a classifier of good specificity. This is due to the

fact that DPM first detects the body parts in an image be-
fore making an inference in an image region. Unfortunately,
kangaroo body part visibility varies depending on its pose.
In other words, the DPM may fail to detect on some poses
where important body parts are occluded. From our empiri-
cal observations, we found that although DPM fails to detect
kangaroos due to occlusion of important body parts, its hy-
pothesis score defined in Eqn. 1 is still significantly higher
than the true negatives (i.e. the background). We shall call
these as weak negatives. The set of images belong to weak
negatives is denoted Swn.

In our work, we focus on the weak negatives to improve
DPM detection performance. To that end, we propose to use
pose specific SVM models in addition to the original DPM
model. This formulation allows the system to markedly im-
prove the performance while maintaining low computational
complexity.

Let Gj = {xi}
i=mj

i=1 be the positive training samples for
the j-th pose, where mj denotes the number of positive train-
ing samples and xi denotes the HOG histogram representa-
tion of the positive exemplar. The pose specific SVM can be
trained using the general max margin training via.

min
1

2
‖γj‖2 s.t., yi(xi + βj) ≥ 1, i = 1, ..,mj (4)

where γj and βj are the parameters for pose model j.
For each pose j, we use the pose information manually

labelled from the training set to create the positive training

samples Gj . We then train the SVM model by using Gj as pos-
itive exemplars as well as all the negative exemplars. In our
work we define eight different poses: front, rear, left, right,
front-left, front-right, rear-left and rear-right. As for DPM,
we use all positive exemplars from all poses together with the
negative exemplars.

During the detection process, we combine the score from
DPM and the multi-pose SVM as follows.

Ψ(I) =

{
Φpose(I), if I ∈ Swn

Φdpm(I), otherwise
(5)

where Ψ(·) is our final detector score; Swn is the weak nega-
tive set; Φdpm(·) is the DPM detection score defined in Eqn. 1
and Φpose(·) is the multi-pose SVM detection score defined
via.

Φpose(I) = max
(
{ϕj

pose(I)}j=q
j=1

)
(6)

where ϕj
pose(I) is the j-th pose SVM score (i.e. ϕj

pose(I) =

γ>j x+ βj , where x is the HOG representation of I).
In order to determine whether an image region I belongs

to the weak negative set Swn, we could use the following.

I ∈


Ssp, if Φdpm(χ) > τ1
Swn, if τ1 ≥ Φdpm(χ) > τ2
Ssn, if Φdpm(χ) ≤ τ2

(7)

where τ1 and τ2 are the predefined thresholds from cross val-
idation. Swn, Ssp and Ssn are the weak negative, strong pos-
itive and strong negative sets, respectively.

4. EXPERIMENTAL RESULTS

In the first evaluation, our proposed approach contrasted to
two approaches: a baseline method HOG+SVM [8] and the
state-of-the-art DPM [7] on the proposed Kangaroo dataset.
All the hyper-parameters were determined empirically from
the cross validation set.

Table 1 shows the evaluation results. As we can see, the
proposed approach achieves marked improvement over stan-
dard DPM. It is also worth noting that DPM has the lowest
False Positive Rate (FPR); corroborating the previous anal-
ysis that says DPM has high specificity. As our proposal is
an extension of DPM, it also has low FPR on par with DPM.
The challenge posed by the dataset is also reflected in the per-
formance of HOG+SVM method which could be considered
as a good baseline method for pedestrian detection. (Other
state-of-the-art pedestrian detection methods such as [9] will
be investigated in the future.)

To further show the efficacy of our method, we present
some qualitative results in Fig. 5. Since the proposed ap-
proach is based on DPM’s strength in detecting body parts,
we can see the example of a correct detection in (a) and a bird
falsely detected as a kangaroo in (b). In (c), the proposed ap-
proach fails together with DPM due to the serious occlusion
of most body parts. However, when only a few body parts
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are hard to detect like in (d), the proposed approach can work
where DPM fails. This is due to the fact that the multi-pose
SVM models incorporate the pose information when they are
initially trained.

Methods TPR FPR AP
HOG+SVM [8] 52.0% 18.0% 67.0%
DPM [7] 66.0% 0.2% 82.9%
Proposed 68.8% 0.3% 84.25%

Table 1. Detection Performance and Comparison with the
state-of-the-art methods

In the second evaluation, we used our proposed approach
in a Kangaroo population study. More precisely, we applied
our detector on the raw frames collected in the national parks.
The number of detections was then divided into 5 time scopes
over 24 hours (i.e. 00:00-3:00, 3:00-7:00, 7:00-18:00, 18:00-
22:00, 22:00-24:00). The time information from each frame
was extracted from the time stamp provided from the camera.
We collected 4,000 frames from four different locations (each
location 1,000 frames). For each location, the 1,000 frames
were further divided according to the 5 time scopes. The ac-
cumulated kangaroo population over the 24 hour time space
is presented in Fig. 6.

(a) (b)

(c) (d)

Fig. 5. Kangaroo detection results made by proposed ap-
proach. (a): correct detection. (b): an example of false de-
tection. (c): missed detection due to occlusion. (d): correct
detection made by the proposed approach where DPM fails.

From this result, we found that kangaroos tend to be more
active in the early evening in these locations. In addition, kan-
garoo is much more active in the night than day time. This
finding corroborates previous biological studies suggesting
that most kangaroos are nocturnal animals [10]. It is inter-
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Fig. 6. Kangaroo’s Population Distribution in 24-hours.

esting to note that even using non-optimised research code,
we only required six hours to compute the population over
the 24-hour period at four locations; significantly more effi-
cient and effective than manual methods. This demonstrates
the efficacy of our method for future kangaroo studies.

5. CONCLUSION

In this paper, we address problems in current kangaroo re-
search such as population tracking and activity monitoring.
However, traditional manual observation can be less-effective
and more expensive than automated systems especially for
kangaroo surveillance in the wild. As an important step for
conducting experiments using computer vision tools, a suit-
able field dataset of kangaroos does not exist. To that end, we
created a novel kangaroo dataset from field-work data. The
dataset could be used by practitioners in developing automatic
systems. As the initial step in the automation, we proposed a
kangaroo detector which could be used to detect kangaroos
over the video. The detector is based on the state-of-the-art
Deformable Part Model approach. Since DPM may fail to de-
tect kangaroos with occluded parts caused by different poses,
we proposed to combine pose-specific SVM classifiers with
DPM. The evaluation done in the proposed benchmark dataset
shows the efficacy of our proposed detector. In this work, we
also demonstrated that the proposed kangaroo detector could
be used to conduct a study on kangaroo activity over time.
In the future, we plan to enlarge the dataset with other Aus-
tralian native animals such as dingos and emus. In addition
other approaches such as attribute feature [11], context based
systems [12, 13] and active learning [14] will be investigated.

6. ACKNOWLEDGEMENT

The authors like to thank the Queensland Parks and Wildlife
Service for their animal surveillance data.

1964



7. REFERENCES

[1] T. Clutton-Brock and B.C. Sheldon, “Individuals and
populations: the role of long-term, individual-based
studies of animals in ecology and evolutionary biology,”
Trends in Ecology and Evolution, vol. 25, pp. 562–573,
Sept. 2010.

[2] C.H. Lampert, H. Nickisch, and S. Harmeling, “Learn-
ing to detect unseen object classes by between-class at-
tribute transfer,” in Computer Vision and Pattern Recog-
nition, International Conference on (CVPR). IEEE,
2009, pp. 951–958.

[3] O.M. Parkhi, A. Vedaldi, A. Zisserman, and C.V. Jawa-
har, “Cats and dogs,” in Computer Vision and Pat-
tern Recognition, International Conference on (CVPR).
IEEE, 2012, pp. 3498–3505.

[4] W.W. Zhang, J. Sun, and X.O. Tang, “Cat head de-
tectionhow to effectively exploit shape and texture fea-
tures,” in Computer Vision, European Conference on
(ECCV), 2008, pp. 802–816.

[5] J.P. Crall, C.V. Stewart, T.Y. Berger-Wolf, and D.I. etc.
Rubenstein, “Hotspotter patterned species instance
recognition,” in Application of Computer Vision, IEEE
Winter Conference on (WACV). IEEE, 2013, pp. 230–
237.

[6] M.J. Wilber, W.J. Scheirer, P. Leitner, and B. etc. Heflin,
“Animal recognition in the mojave desert: Vision tools
for field biologists,” in Application of Computer Vision,
IEEE Winter Conference on (WACV). IEEE, 2013, pp.
206–213.

[7] P.F. Felzenszwalb, R.B. Girshick, D.McAllester, and
D. Ramanan, “Object detection with discriminatively
trained part based models,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on (PAMI), vol.
32, pp. 1627–1645, Sept. 2010.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in Computer Vision and Pat-
tern Recognition, International Conference on (CVPR).
IEEE, 2005, vol. 1, pp. 886–893.

[9] P. Luo, Y.L. Tian, X.G. Wang, and X.O. Tang, “Switch-
able deep network for pedestrian detection,” in Com-
puter Vision and Pattern Recognition, International
Conference on (CVPR). IEEE, 2014, pp. 899–906.

[10] M. Daly, P.R. Behrends, and M.I. Wilson, “Activity pat-
terns in small mammals,” Ecological Studies, vol. 141,
pp. 145–158, 2000.

[11] L.C. Liu, A. Wiliem, S.K. Chen, and B.C. Lovell, “Au-
tomatic image attribute selection for zero-shot learning
of object categories,” in Pattern Recognition, Interna-
tion Conference on (ICPR). IEEE, 2014, pp. 2619–2624.

[12] Arnold Wiliem, Vamsi Madasu, Wageeh Boles, and
Prasad Yarlagadda, “A context-based approach for de-
tecting suspicious behaviours,” in Digital Image Com-
puting: Techniques and Applications. IEEE, 2009, pp.
146–153.

[13] Arnold Wiliem, Vamsi Madasu, Wageeh Boles, and
Prasad Yarlagadda, “A suspicious behaviour detection
using a context space model for smart surveillance sys-
tems,” Computer Vision and Image Understanding, vol.
116, no. 2, pp. 194–209, 2012.

[14] Y. Yang, Z.G. Ma, F.P. Nie, X.J. Chang, and A.G. Haupt-
mann, “Multi-class active learning by uncertainty sam-
pling with diversity maximization,” International Jour-
nal of Computer Vision (IJCV), pp. 1–15, Nov. 2014.

1965


