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ABSTRACT 

A sound signal produces a unique texture which can be 
visualized using a spectrogram image and analyzed for 
automatic sound recognition. In this paper, we explore the 
use of a well-known image texture analysis technique called 
the gray-level co-occurrence matrix (GLCM) for sound 
recognition in an audio surveillance application. The GLCM 
captures the distribution of co-occurring values at a given 
offset. Unlike most other similar research which derive 
features from the GLCM, we use the matrix values itself to 
form the feature vector with analysis carried out in sub-
bands. When compared to a baseline feature from related 
work, the proposed spectrogram image texture feature 
(SITF) gives marginally lower results under clean and high 
signal-to-noise ratio (SNR) conditions but significantly 
better results are achieved at low SNR, where the baseline 
feature was seen to be less effective. 

Index Terms—Audio surveillance, gray-level co-
occurrence matrix, spectrogram image texture feature, sound 
recognition, support vector machine 

1. INTRODUCTION 
In recent years, there has been a growing interest in using 
features derived from the spectrogram image of a sound 
signal in sound recognition applications. In a sound event 
recognition application in [1], central moments are extracted 
as features from the short-time Fourier transform (STFT) 
spectrogram image of sound signals which produced 
significantly better results under noisy conditions when 
compared to mel-frequency cepstral coefficients (MFCCs), 
a common feature in speech and sound recognition 
applications. In an audio surveillance application in [2], we 
took a similar approach to this spectrogram image feature 
(SIF) method but with reduced feature dimensions, referred 
as reduced SIF (RSIF). Time-frequency images of a sound 
signal were also used for feature extraction in a hearing aid 
application [3]. While more than thirty features were 
extracted, eleven features were chosen through correlation 
analysis for classifying four classes. 

In music genre recognition in [4], a slightly different 
approach is taken where the spectrogram representation is 
viewed as a texture image. Texture analysis is carried out 

using gray-level co-occurrence matrix (GLCM), also known 
as gray-tone spatial dependence matrix [5], which gives the 
spatial relationship of pixels in an image. From the fourteen 
textural descriptors proposed in [5], the following seven are 
extracted as features from the GLCM: entropy, correlation, 
homogeneity, third order momentum, maximum likelihood, 
contrast, and energy. The GLCM texture analysis technique 
using the fourteen textural descriptors of [5], a subset of 
these features, or with the addition of other textural 
descriptors has been successfully applied in other areas of 
research involving image classification such as insect 
recognition [6], evaluating fabric surface roughness [7], 
diagnosis of abdominal tumors using ultrasound images [8], 
and urban and agricultural land classification [9]. 

However, in a face recognition problem in [10], instead 
of extracting textural features from the GLCM, the matrix 
values itself form the feature vector. When tested with four 
different databases, under most experimental conditions, this 
approach was shown to give significantly better results than 
using the combined fourteen textural descriptors as features. 

In this work, we apply the GLCM technique of texture 
analysis to sound signal spectrogram images for 
classification of sounds in an audio surveillance application. 
However, instead of extracting textural descriptors from the 
GLCM, we propose to concatenate the columns of the 
matrix to form the feature vector for a sound signal. We 
refer this as the spectrogram image texture feature (SITF). 
Unlike in [4, 10], we also evaluate the performance of the 
SITF under noisy conditions. In addition, we perform 
texture analysis in sub-bands. This essentially divides the 
spectrogram image into horizontal sections of different 
frequency bands. Analysis is performed independently in 
each frequency band and the final feature vector is a 
concatenation of the feature vectors from each sub-band. 
Due to the non-uniform nature of the sound signal 
spectrograms, this local feature extraction technique was 
shown to give higher results than global features in [4], 
which they referred as zoning. 

The rest of this paper is organized as follows. Section 2 
gives an overview of feature vector formation using GLCM 
method of spectrogram image texture analysis. Section 3 is 
on experiments, results, and discussions while conclusion 
and future recommendations are given in Section 4. 
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2. FEATURE EXTRACTION 

The procedure for generating the time-frequency image and 
performing image texture analysis using GLCM are 
described below. 

2.1. Grayscale Spectrogram 

In this work, we consider the linear grayscale spectrogram 
only since it was found to be more noise robust than the log 
grayscale spectrogram in [2] and gave the best overall 
classification accuracy. Firstly, the discrete Fourier 
transform (DFT) is applied to the windowed signal as 
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where N is the window length, ݔሺ݊ሻ is the time-domain 
signal, ܺሺ݇,  ሻ is the ݇௧ harmonic corresponding to theݐ
frequency ݂ሺ݇ሻ = ௦ܨ݇ ܰ⁄  for the ݐ௧ frame, ܨ௦ is the 
sampling frequency, and ݓሺ݊ሻ is the window function. 

The linear values are then obtained as 
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These values are then normalized in the range [0,1] 
which gives the grayscale image intensity values. The 
normalization is given as 
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Illustration of spectrogram images, mapped to the HSV 
color space for better visualization, under clean conditions 
and with the addition of noise at 0dB signal-to-noise ratio 
(SNR) can be found in Fig. 1. 

2.2. Feature Vector Formation Using GLCM 

GLCM is a matrix of frequencies where each element ሺ݅, ݆ሻ 
is the number of times intensity value ݆ is located at a 
certain distance and angle, given by the displacement vector [݀ ݀௧], where ݀ is the offset in the ݕ direction and ݀௧ is 
the offset in the ݔ direction, from intensity value ݅ in an ௧ܰ × ܰ image ܫ. Mathematically, this can be given as 
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where the size of the output matrix is ܰ × ܰ, ܰ is the 
number of quantized gray levels. The typical angles for 
computing the GLCM are 0°, 45°, 90°, and 135° 
corresponding to the displacement vector [0 ݀], [−݀ ݀], [−݀ 0], and [−݀ − ݀], respectively. 

The feature vector is then formed by concatenating the 
GLCM values into a column vector. 

 
(a) 

 
(b) 

Fig. 1. Spectrogram images for a sound signal from construction 
sound class. (a) Linear spectrogram image under clean conditions 
and (b) linear spectrogram image at 0dB SNR with factory noise. 

 
3. EXPERIMENTAL EVALUATION 

A description of the sound database used in this work is 
given first followed by an overview of the noise conditions 
and the experimental setup. We then present results using 
two baseline features: MFCCs and RSIF. Next, results using 
the proposed SITF are presented. 

3.1. Sound Database 
The sound database has a total of 1143 files belonging to 10 
classes: alarms, children voices, construction, dog barking, 
footsteps, glass breaking, gunshots, horn, machines, and 
phone rings. The sound files are largely obtained from the 
Real World Computing Partnership (RWCP) Sound Scene 
database in Real Acoustic Environment [11] and the BBC 
Sound Effects library [12]. All signals in the database have 
16-bit resolution and a sampling frequency of 44100 Hz. 
More details about the sound database and its comparison 
with that used in other similar work can be found in [2]. 

3.2. Noise Conditions 
The performance of the different features are investigated 
under three different noise environments taken from the 
NOISEX-92 database [13]: speech babble, factory floor 1, 
and destroyer control room. The signals are resampled at 
44100 Hz and the overall performance is measured in clean 
conditions and at 20dB, 10dB, 5dB, and 0dB SNR. 

3.3. Experimental Setup 
For all experiments, signal processing is carried out using a 
Hamming window of 512 points (11.61 ms) with 50% 
overlap. Support vector machine (SVM) is used for 
classification where the classification accuracy is given in 
percentage as number of correctly classified test samples 
divided by the total number of test samples. Being a binary 
classifier, we use the one-against-all (OAA) method [14, 15] 
for multiclass classification where the classifier that has the 
highest output function assigns the class. In a similar work 
[2], the OAA method was shown to give the best overall 
performance when compared to one-against-one (OAO) 
[16], decision directed acyclic graph (DDAG) [17], and 
adaptive directed acyclic graph (ADAG) [18] multiclass 
classification methods and against the K-nearest neighbor 
(KNN) classifier.  
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Table I. Classification accuracy using baseline features 
Feature Clean 20dB 10dB 5dB 0dB Average 
Log-MFCC 98.43 92.83 73.14 57.57 43.31 73.05 
Linear-MFCC 99.21 93.53 86.09 70.87 47.16 79.37 
Linear-RSIF 92.13 92.04 89.33 78.57 53.37 81.08 

 
All results are reported using a nonlinear SVM with a 

Gaussian radial basis function kernel as it was found to give 
the best results. The classifier parameters, refer to [2], were 
tuned using cross validation where, instead of maximizing 
the classification accuracy under each noise condition, 
samples from all noise conditions were used at once to get 
the best overall classification accuracy. For all 
experimentations, the classifier is trained with two-third of 
the clean samples with the remaining one-third data used for 
testing under clean and noisy conditions.  

3.4. Results and Discussions 

3.4.1. Baseline Features 

The first baseline method uses MFCCs as features. The 
feature vector for each frame is 39-dimensional: 13 MFCCs 
using a 20-filterbank system, plus deltas and accelerations. 
The overall size of the feature vector for a signal is 39 × ௧ܰ, 
where ௧ܰ is the number of frames in the signal, which is 
different in each case depending on the length of the signal. 
After data normalization, the final feature vector is 
represented by concatenating the mean and standard 
deviation for each dimension. This results in a 78-
dimensional final feature vector. 

The second baseline method uses the SIF where the 
spectrogram image is divided into 9 × 9 blocks and second 
and third central moments are computed in each block. In 
[1], the features from each block were concatenated to form 
the final feature vector, resulting in a 162-dimensional 
feature vector. However, in [2], feature dimension reduction 
by concatenating the mean and standard deviation of the 
central moment values along the row and column of the 
blocks achieved comparable classification accuracy. This 
technique resulted in a 72-dimensional feature vector. 
Therefore, only results using the RSIF are presented.  

The classification accuracy values using the baseline 
features are given in Table I. MFCCs give the highest 
classification accuracy under clean conditions and at 20dB 
SNR but the RSIF gives superior performance at 10dB, 5dB, 
and 0dB SNR and gives the best overall classification 
accuracy. A detailed analysis of the results can be found in 
[2]. 

3.4.2. SITF 

For obtaining the SITF, we first apply the GLCM technique 
of texture analysis to the spectrogram images. The feature 
vector is then formed by concatenating the columns of the 
matrix. In preliminary experiments, we compared the 
classification accuracy with increasing values of ܰ. The 

Table II. Classification accuracy using SITF – individual and 
combined feature vectors ( ܰ = 2 and ݀ = 1) 

Angle Clean 20dB 10dB 5dB 0dB Average
0° 84.78 84.60 77.69 68.24 49.34 72.93 
45° 82.15 81.98 80.23 75.33 56.61 75.26 
90° 76.12 76.12 74.45 70.34 50.39 69.48 

135° 81.36 81.28 78.57 72.00 54.42 73.53 
All Angles 86.09 85.74 81.45 74.89 55.03 76.64 

 
average classification accuracy decreased as ܰ increased, 
therefore, for all the experiments that follow, we use ܰ =2, which gave the highest average classification accuracy.  

We perform two sets of experiments using the SITF: 
• compare the classification accuracy using feature 

vectors formed from application of GLCM analysis 
at angles of 0°, 45°, 90°, and 135° and then with 
combined feature vector, 

• compare the classification accuracy with increasing 
number of frequency bands. 

The results for the first set of experiments are given in 
Table II with ܰ = 2 and ݀ = 1. Comparing the average 
classification accuracy, for feature vectors using individual 
angles, the best average classification accuracy is achieved 
using an angle of 45° while the combined feature vector 
gives marginally better classification accuracy. In this 
experiment, the spectrogram image is not divided into sub-
bands before feature extraction. Therefore, the feature 
vector dimension when analyzing at individual angles is ܰଶ = 4 and 4 ܰଶ = 16 when the feature vector from the 
four angles are combined. As such, while the feature vector 
dimension has quadrupled when combined, there isn’t a 
considerable increase in the classification accuracy in 
comparison to the best performing individual feature vector. 
Also, while the best results at 0dB SNR using SITF are 
slightly higher, the overall performance using Linear–
MFCCs and RSIF, as presented in Table I, are still better. 

In the next set of experiments, we first look at the effect 
of performing GLCM analysis with increasing number of 
frequency bands on the classification accuracy. The 
spectrogram image is now divided into blocks of horizontal 
sections with equal number of frequency bins in each sub-
band. The GLCM is computed in each sub-band which are 
then concatenated into one matrix. This matrix is then 
concatenated into a column vector which forms the final 
feature vector. The number of pixels in the spectrogram 
image along the vertical, or frequency axis, is ܰ 2⁄ = 256, 
therefore, various number of frequency bands, ܰ, from 1 to 256 can be experimented with. We experimented with ܰ = 1, 2, 4, 8, 16, 32, 64, and 128 at a time. The results 
presented in Table III use feature vector combined from all 
four angles.  

While there isn’t a significant change in the 
classification accuracy with increasing values of ܰ at lower 
values of ܰ, there is notable increase in the classification 

1958



Table III. Classification accuracy using SITF (combined feature 
vector) – effect of increasing value of ܰ ( ܰ = 2 and ݀ = 1) 

ܰ Clean 20dB 10dB 5dB 0dB Average 
1 86.09 85.74 81.45 74.89 55.03 76.64 
2 85.04 84.51 81.98 75.42 57.83 76.96 
4 85.04 84.34 82.59 77.17 59.58 77.74 
8 83.99 83.99 82.33 77.34 59.49 77.43 

16 86.09 86.09 84.16 82.15 62.38 80.17 
32 87.93 87.66 86.79 86.00 69.03 83.48 
64 90.29 89.68 89.59 87.75 73.40 86.14 

128 88.71 88.63 88.10 85.83 72.27 84.71 
 

accuracy from ܰ = 16 onwards with the most improved 
results at 5dB and 0dB SNR. The highest classification 
accuracy under all noise conditions is at ܰ = 64. 

The GLCM method of texture analysis determines 
frequency of repeating patterns or intensity value 
combinations in the spectrogram image. The intensity value 
of pixels in a spectrogram image are dependent on the 
amplitude of the signal at any given time and frequency. 
The linear grayscale spectrogram only shows the dominant 
power frequencies and the more diffuse noise has only 
isolated effects on the time-frequency image, as shown in 
Fig. 1. As such, the inherent patterns largely remain intact 
with the addition of noise. In addition, using ܰ =2 essentially means that the grayscale image is transformed 
to a binary image for GLCM analysis. Therefore, small 
linear transformations caused by the noise may not change a 
pixel value as long as it does not cross the threshold for 
gray-level conversion, thereby maintaining the pattern. 
However, extracting global features from the spectrogram 
image means noise manipulated data is also captured in the 
only set of feature data. Extracting features from different 
frequency bands ensures feature data in sub-bands not 
affected by noise are mostly unchanged leading to a more 
robust performance.  

When compared to results using the baseline features, 
the proposed SITF is not able to match the classification 
accuracy of MFCCs under clean conditions and at 20dB 
SNR but gives significantly better results at 10dB, 5dB, and 
0dB SNR. When compared with the results using the RSIF, 
the SITF gives slightly lower results under clean conditions 
and at 20dB SNR, comparable at 10dB SNR, but, once 
again, significantly better classification accuracy is achieved 
at 5dB and 0dB SNR, increasing from 78.57% to 87.75% 
and 53.37% to 73.40%, an increase of 9.18% and 20.03%, 
respectively. Therefore, the key advantage of the SITF over 
the baseline features is its greater robustness at 5dB and 0dB 
SNR, or low SNR in general. To ensure that this 
improvement wasn’t simply because of the different method 
of spectrogram image division before feature extraction, we 
applied the frequency sub-band analysis method to the SIF 
but there wasn’t any significant change in the results. 

However, the disadvantage of the proposed method is 
its high computational cost. The SITF dimension using sub-

Table IV. Classification accuracy using SITF with individual 
feature vectors ( ܰ = 64) 

Angle Clean 20dB 10dB 5dB 0dB Average 
0° 88.45 88.45 87.84 84.95 69.29 83.80 

45° 89.76 89.41 89.33 87.66 71.92 85.62 
90° 88.45 88.01 87.93 86.44 70.78 84.32 

135° 88.71 88.71 88.36 86.44 71.13 84.67 
 

band analysis and with combined feature vector from all 
four angles can be given as ܰ × 4 ܰଶ. With ܰ = 64, 
where the highest classification accuracy is achieved, the 
feature vector dimension is 1024, which is about 6.32 times 
more than the SIF [1], 13.13 times more than MFCCs, and 14.22 times more than the RSIF [2]. We also experimented 
with the sub-band analysis technique using each of the four 
angles. In general, it was observed that as ܰ increased in 
value, the difference in the classification accuracy with 
individual feature vectors and the combined feature vector 
got minimal. Table IV gives the classification accuracy 
using feature vectors from each of the four angles 
considered with ܰ = 64. Best results were once again 
achieved with features extracted from angle of 45°. While 
the individual feature vectors give slightly lower 
classification accuracy than the combined features, these can 
be considered more effective since the feature vector 
dimension is much lower, reduced by 4 to 256. This could 
be an alternative if lower computational time is a priority. 

We also experimented with increasing values of ݀ and 
it was observed that while increasing ݀ from 1 to 2 
increases the average classification accuracy for lower 
values of ܰ, the difference between the two set of results 
got smaller as the value of ܰ increased. Eventually, the 
average classification accuracy with ݀ = 1 surpassed those 
at ݀ = 2, and, at ܰ = 64, the highest classification 
accuracy was still achieved using ݀ = 1. 

4. CONCLUSION 

The proposed SITF was found to be more noise robust than 
two baseline features: MFCCs and the RSIF. When 
compared to the RSIF, the best performing baseline feature, 
the proposed feature shows greater robustness at low SNR. 
Best results are achieved using sub-band analysis where the 
spectrogram image is divided into equal sized frequency 
bands and the feature vector from each frequency band is 
concatenated to form the final feature vector. The highest 
classification accuracy was achieved when the feature 
vector from GLCM analysis at angles of 0°, 45°, 90°, and 135° was combined with ܰ = 2, ܰ = 64, 
and ݀ = 1. However, the average classification accuracy 
with individual feature vectors was only slightly lower, 
particularly at 45°, and had the added advantage of a feature 
vector which was four times smaller in dimension. We 
chose increasing intervals in determining the optimal value 
for ܰ but smaller intervals could be experimented with for 
potentially better results. Feature vector reduction methods 
can also be considered for faster computational time. 
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