LINEAR SUPPORT VECTOR MACHINES WITH NORMALIZATIONS

Yiyong Feng and Daniel P. Palomar

Dept. of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

ABSTRACT

In this paper, we start with the standard support vector machine
(SVM) formulation and extend it by proposing a general SVM that
allows many different variations captured by normalizations in the
formulation with very diverse numerical performance. The proposed
formulation can not only capture the existing work, i.e., standard
soft-margin SVM, ¢;1-SVM, as special cases, but also enable us to
propose more SVMs that outperform the existing ones under some
scenarios.

Index Terms— Convex Optimization, Normalizations, SVM.

1. INTRODUCTION

Since the support vector machine (SVM) was established [1, 2], it
has become the standard technique for many different supervised
classification problems in different fields, e.g., the cancer diagnostic
in bioinformatics, image classification in objective detection, face
recognition in computer vision, text categorization in document pro-
cessing, and for more related applications, see [3].

The standard soft-margin SVM usually leads to nonsparse so-
lutions. However, in many real applications it is imperative to per-
form feature selection to detect which features are actually relevant.
The common way of doing it is with a sparsity penalty [4]. Some
examples are the classic ¢1-norm penalty [5], the exponential con-
cave penalty [6], or adding convex relaxation constraints on ¢;-norm
penalty [7].

Feature scaling can be treated as a generalization of feature se-
lection by weighting or scaling the features with different scalars
rather than only O or 1. From this point of view, the method of stan-
dardizing the input data before training the SVM is a special case of
feature scaling where each feature is independently normalized so
that it has zero mean and unit variance. However, all the knowledge
of the location and scale of the original data may be lost after stan-
dardization [8,9] and there is no guarantee that standardization will
improve the classification performance in general [10]. Still, data
standardization is useful to avoid the features with larger dynamic
range dominating those with smaller ones and the numerical diffi-
culties during the calculation [8,9]. Some methods have been pro-
posed to find better feature scaling. Papers [11] and [12] focused on
finding the optimal feature scaling via minimizing some analytical
upper bounds on the leave-one-out cross validation error, since the
gradient of such objectives with respect to the scaling variables can
be easily computed and the simple gradient method can be implied
to find at least some local optimal solution easily. Later, an adaptive
method [13] was proposed to avoid the potential overfitting.

However, the aforementioned methods all lead to nonconvex
problems. To overcome this drawback, [14] proposed the concept
“normalized margin” and the optimization problem of maximizing
“normalized margin” can be reformulated into a convex form re-
vealing a connection with the traditional ¢;-SVM; in particular as
a weighted ¢1-SVM where the weights can be computed based on
the input data directly.

In this paper, motivated by the work in [14], we propose a gen-
eral SVM formulation that can capture many existing linear SVMs
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as special cases by taking different normalizations, show the connec-
tions and differences between different SVMs clearly, and moreover
provide us with more insights on different SVMs. We also bene-
fit from the proposed formulation by proposing some new SVMs
that outperform the existing ones under small training size scenar-
ios. This proposed formulation is the main contribution of our work.

Notation We adopt the notation of using boldface lower case for
vectors a, upper case for matrices A. The notation 1 denotes all
one column vector with proper size. The transpose operator is (~)T,
the trace operator is Tr (-), and ||-|| , means the matrix Frobenius
norm. The curled inequality symbol > is used to denote generalized
inequality: A > B means that A — B is an Hermitian positive
semidefinite matrix. The element of matrix A at the i-th row and j-
th column is denoted by A;;. The notation A2 denotes principal
square root of matrix A. Diag (A) denotes a diagonal matrix with
diagonal elements being that of A, and its principal square root is
Diag!/? (A). The notation R (X) stands for the range space of X.

2. LINEAR SUPPORT VECTOR MACHINES

For a binary classification problem: x; € R? — y; € {+1,-1},
i =1,2,..., N, the goal of linear classification is to find a linear
decision boundary that classifies x;’s according to their labels y;.
The soft-margin SVM aiming to find the trade-off between the
large margin and small misclassification has the formulation [2]:

e e 1 2 T
= C1

minimize 3 [|8]l; +C1°¢

subjectto y; (,BTXl‘ + /80) >1-&, Vi ()
£>0.

It turns out that 1/ || 3||, has a nice interpretation that it measures the
separation between the two classes. For example, for the linear sep-
arable case, it equals to the minimum distance between the samples
from either class and the linear decision boundary. Because of that,
the quantity is also called “margin”.

A well-known method to induce feature selection or sparsity in
3 consists in replacing the £2-norm with £;-norm' [5]:

e 1 2 T
5 C1
minimize 3 [|8]l, +C1°¢
subjectto y; (ﬁTxi + ﬂo) >1-&, Vi @
£>0.
3. A GENERAL LINEAR SVM FORMULATION

3.1. Problem statement

Consider the general linear mapping:

o (x4, F) £ Fx; 3)

"Usually ||3||; is used in the objective rather than HBH% However, those
two formulations are equivalent for an appropriate choice of C. For the con-
sistency of presentation in this paper, we adopt || ,BHf here.
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where F € R™*¢, If F is square and diagonal, the mapping is scal-
ing the features so that they are independent of the units in which
they were measured [14]. The more general nonsquare and nondiag-
onal F allows for more degrees of freedom; for example, the features
can be rotated prior to the scaling. Here, we extend the concept of
normalized margin (NM) proposed in [14] by taking more general
“normalization” as follows:

NM £ M/\/¢ (F) @

where M is the margin, and ¢ (F) is a general normalization term
that measures how compact the training data is. Rather than focusing
on some specific definition of the normalization ¢ (F'), we suppose
a general assumption as stated below.

Assumption 1. We assume ¢ (F) is function of F and can always
be written in the following form

A 1/2 2
R N

&)

where matrix Ag € RX? is positive semi-definite and represents
the information abstracted from the training data {xi,yi}fvzl in-
dexed by the parameter 6 € ©.

Note that ¢ (F') defined by (5) is convex in F since it is the
pointwise maximum of a family of quadratic convex functions of F
indexed by 6. To understand how ¢ (F') measures the compactness
of the training data, let us visit the normalization term used in [14]:

Example 1. The normalization in [14]

N
A 1+ 1Yj
o (F) £ 3 —JHIF (xi - )3 (©)

i,j=1

uses the summation of squared distances among the same class data
instances to measure the compactness of the transformed training
samples, and it is a specific example of (5) with
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To keep the problem statement as general as possible, we make
use of the general expression (5) for the normalization ¢ (F) in the
following part of this section. The underlying idea is to maximize
the margin while making each class as compact as possible. To start
with, we consider the linearly separable case first. The problem of
jointly finding the linear mapping F' and the parameters of the sep-
arating hyperplane with the normalized margin maximized can be
formulated as:

maximize M/+/¢ (F
M,)ﬂ?(l,ﬁolyzF /1 ¢ 3 9)
subject to Yi a1, (,8 Fx; + ,Bo) > M, Vi

Since for any feasible 3 and o, any positively scaled multiple is
also feasible and we can arbitrarily set ||3||, = 1/M and problem
(9) can be reformulated as:

inimize ¢ (F) (|85
minimize 3¢ (F) [I8Il; (10)
subjectto  y; (B'Fx; + o) > 1, Vi.

Similar to the soft-margin SVM (1), the linearly nonseparable case
of maximizing normalized margin problem can be formulated as:

inimi 1o (F 2017
minimize 3¢ (F) [18]l; + C1°¢
subjectto y; (,BTin + ,30) >1-&, Vi 1)

£>0.

The idea of the linear transformation Fx here is quite similar to
many problems in signal processing, for example, the optimal lin-
ear precoding designs for the MIMO communication systems [15]
or wideband noncooperative systems [16].

3.2. Proposed solving approach

Due to space limitations, we provide our theoretical findings only
in this paper. The detailed proofs, more meaningful explorations
and insights, and more numerical experiments are presented in a full
version of this work [17].

Obviously, the problem of interest (11) is nonconvex. Fortu-
nately, we are able to reformulate it into convex form. Since ¢ (F) =
maxgce {Tr (FTFAg)} is quadratic in F for any given 6 € ©,
we can always scale F' and (3 appropriately so that ¢ (F) = 1. Fur-
thermore, the constraint can be relaxed to ¢ (F) < 1 since the equal-
ity will always be active at the optimal point, otherwise we could
scale 3 down and scale F' up with the same scalar to find another
feasible point but with the objective value further reduced. Then,
problem (11) is equivalent to:

e 1 2 T

minimize 3 [|Bll, +C1°¢

subjectto  y; (,BTFXZ' + 60) >1-&, Vi 12)
¢ (F) <1,
£>0,

which can be further reformulated as:

minimize %t +C17¢

B,Bo,F.&,t

subjectto  y; (,BTFXZ- +Bo) >1—&, Vi
BB’ <1, (13
¢ (F) <1,
£>0.

To proceed, we consider the following different problem:

minimize %t +C17¢

B,Bo,F,&t

subjectto  y; (B Fx; + ,6’0)r >1-¢&, Vi
F' B3 F <(F F, (14)
¢(F) <1,
£>0.

Interestingly, we have the following result.

Proposition 1. Problem (13) and problem (14) have the same op-
timal value and their optimal solutions have the following relation-
ships:

o If (837, Bo1, F1, &7, t1) is a optimal solution of problem (13),
then it is also a optimal solution of problem (14);

o If (B3, By, F3, €5, t5) is a optimal solution of problem (14),
then (PR(F*),BQ, Boa, F§,£§,t§) is a optimal solution of

2
problem (13), where PR(F;)Z is the projector that projects

any vector onto R (F3).

ZPR<X) = XX, where XT is the pseudo inverse of X [18].
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In other words, Prop. 1 simply says that problem (13) and prob-
lem (14) are equivalent, and thus we can investigate problem (14)
instead. Denote the variables v £ FT,B, TA2F'F > 0 (T €
R?*9), and by the Schur complement, problem (14) can be rewritten
as a semi-definite programming (SDP):

minimize
v,B0,T,§,t
subject to

.
st+C1'¢

Yi (VTXi + 50) >1-&, Vi
maxegece {Tr (TAQ)} S 1,
tvilog
v T -7
rank (T) < min (m,d),
£>0.

s)

Note that, if m < d the above problem is still nonconvex due to the
the rank constraint rank (T') < m. However, under some condition,
we can show that the SDP relaxation (SDR) in fact is tight.

Proposition 2. Problem (15) is bounded below by:

minimize
v,B0,€
subject to

2
%m&nge {HA‘;/QVHQ} + CITE

Yi (VTXZ' + ﬁo) >1-&, Wi
£>0.

(16)

In addition, if there exists some Ag full rank, the lower bound is

tight, and the optimal solution of (16) is the optimal solution of (15)
2

with T = va/maX(;e@ {HAé/Qv’L
Thus, when there exists some Ag full rank, problem (11) and
(16) are indeed equivalent no matter the size of F.
Next, we revisit the case F being diagonal. Similar to the deriva-
tion procedure from (11) to (15), we can easily check that problem
(11) can be reformulated as:

minimize %t +C17¢
v,B0, T, &t
subjectto  y; (v xi+Bo) >1—&, Vi
maxeee {Tr (TAQ)} S 1,
t v <o a7)
v T -
T is diagonal,
£>o0.
Furthermore, we can have the following result.
Proposition 3. Problem (17) is bounded below by:
2
min[igmiize 1 maxeceo {HDiaLgl/2 (Ae)vH } +C17¢
V,P0, 1
subjectto  y; (vixi+Bo) >1—&, Vi
£>o0.
(18)

In addition, if there exists some Diag (Ae) full rank, the lower bound
is tight, and the optimal solution of (18) is the optimal solution

of (17) with Ty = |vi|/ (\/Aa*“‘ Dia‘ugl/2 (Ag*)le) where

2
0* = argmaxgceo {HDiagl/2 (Ao) VH }
1

In fact, problem (23) in [14] is a specific case of problem (18)
such that ® and Ag are given by (7) and (8). However, our proof
in [17] is much simpler and more straightforward.

3.3. Classification prediction

Once the parameters (v, B, £) are trained from the SVMs (e.g., (16)
and (18)), we can have the separating hyperplane: f (x) £ v x+£o
and the classification prediction for some new outcome sample x
simply is § = sign (f (x)).

3.4. Insights and new SVMs

For sake of clarity, we allow ourselves a slight abuse of notation Ag
from case to case in the following part of this section.

If we compare Props. 2 and 3, we can see that different normal-
izations result in different penalties:

e When only scaling is considered, i.e., F is restricted to be a
square diagonal matrix in mapping (3), the normalized mar-
gin can be interpreted as the reciprocal of the weighted ¢;-
norm of the normal vector of the separating hyperplane.

e When F is allowed to be any m-by-d matrix in mapping (3),
the normalized margin can be interpreted as the reciprocal of
the weighted ¢2-norm of the normal vector of the separating
hyperplane.

Revisiting the soft-margin SVM (1) and ¢1-SVM (2), we can see
they both do not consider the information in the training data since
Ao = I (they still differ from each other by adopting different vector
norms). Then the previous interpretations might indicate that the
SVMs (16) and (18) based on normalized margin formulation may
be able to improve the classification performance for some data sets
since they can incorporate data structure information via the weigh
matrices Diag'/2 (Ag) or Ag into the problem formulations.
Inspired by the the above observation, we want to propose more
specific SVMs with data structure information incorporated.

3.4.1. Measuring compaction within each class

Consider ® and A are given by (7) and (8), and we use the penalty

N
Ao + I/I)l/2sz -3 1*# (f (x:) = F(x)2 + v v
ij=1

= Z (f (xi) = f (%)% + Z (f(xi)—Fx) 2 +vviv

Yiy;=1 Yiyj=—1

19)

where v > 0 is a trade-off parameter. Since f (x;) represents the
signed distance of point x; to the separating hyperplane up to a com-
mon positive scalar®, thus the first two terms of (19) represents the
summation of squared differences among the distances of the sam-
ples to the separating hyperplane within each class. Then penaliz-
ing (19) means finding the trade-off between concrete compaction
of the samples (e.g., small Z?fj:l Y (f (x) — f(x5))?) and
large soft-margin (e.g., small v ' v, since \/vl-riv stands for the soft-
margin).

3.4.2. Measuring compaction within the whole training data set

Similarly, we can also select Ag = > | (x; — Xo) (X; — %0) ',
where %o £ % vazl X;, and use the following penalty instead

Ao +omy 2y = i (f (xi) = f () +0v v, (20)

ij=1

3Actually, (vTx; + Bo) /[|vlly is exactly the signed distance from
point x; to the hyperplane v ' x + o = 0, see [3, Eq. (4.40)].
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Table 1. The simulated SVMs: existing I-III, proposed IV-V. Here

X],_, 2 dﬁ so that [|[X] p_y || . = V.
p
minimize 1 HAé/QV +017¢
(UF) v,B0,€ p
subjectto  y; (v xi+Bo) >1—&, Vi
£>0.
No. [ p [ Ao
. 1+y,y;
I 1 [Dlag (Zﬁ\fj:l S (% — %) (% — Xj)T)]F:d
II 2 I
I 1 I
Vo2 | SN T - x) i —x,) ]
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Fig. 1. Synthetic example when number of training samples is small.

where the first term, e.g., the summation of squared differences among
the distances between the samples to the separating hyperplane and
the distance between the sample mean to the separating hyperplane,
measures how compact the data is.

The underlying ideas of the above two penalty examples, e.g.,
(19) and (20), are really the same: the samples within each class
should be somehow compact with respect to the separating hyper-
plane. The only difference is that they use different quantities to
measure the compactness of the data.

Intuitively, the above two examples make sense, especially when
the number of training samples is small. Because when we do not
have large enough number of training samples, simply maximizing
the soft-margin, e.g., penalizing v' v only, may give us the sepa-
rating hyperplane that has wrong direction and could be really mis-
leading. However, once we have taken the data information into the
consideration of the formulation, e.g., penalizing (19) or (20), we
may get better separating hyperplanes that are closer to the true one.

4. NUMERICAL EXPERIMENTS

In this section, we compare the proposed methods, e.g., IV-V in Ta-
ble 1, and the existing ones, e.g., I-IIl in Table 1. All the optimiza-
tion problems are solved via the commercial solver MOSEK [19] in
MATLAB. Due to space limitations, we leave the detailed numerical
setup in the full version [17].

To illustrate the insights in Section 3.4 clearly, we consider a
visualizable synthetic experiment with only two attributes, that is,
d = 2. Here we consider two classes with equal probabilities. Sam-
ples of class +1 are drawn from A (14, %) and samples of class
—1 are drawn from A (=14, 2), where & € R%*¢ is the common

1 —-0.8
-0.8 1

Fig. la shows the results when number of training samples is
small. The shape of the distributions is shown by the green ellipses
as contours and the optimal boundary is the solid red line. We can
see that the existing SVM II aiming to maximize the soft-margin
may be misleading sometimes (see the blue dotted line) since only
a few support vectors matter and the other samples do not affect the
separating hyperplane at all. Fortunately, the proposed methods take
all the training data into account and thus aim at finding the large
margin and let all the samples within the same class be compact to
each other can provide separating hyperplanes closer to the optimal
boundary (see the black dash-dotted line and magenta dashed line).
Fig. 1b shows the Receiver Operating Characteristic (ROC) curves
of different methods. We can clearly see that the two proposed meth-
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Fig. 2. Average test error rate versus number of training samples.

ods outperform the standard soft-margin SVM.

Fig. 2a shows best average test error rate versus the number of
training samples of the synthetic data. Clearly, we can see that the
proposed methods are comparable or even outperform the existing
ones, especially when the training sample size is small. This verifies
the insights behind Fig. 1.

Figs. 2b-d show the results of three real data sets available
from [20] (no theoretical optimal boundary anymore). We can ob-
serve similar results and in fact the improvements by the proposed
methods look even more significant than that of the synthetic data.

5. CONCLUSION

In this paper, we have proposed a general linear SVM formulation
that can characterize both the proposed and many existing SVMs
by simply selecting different types of weighted vector norms. The
origin of having such different methods to incorporate the general
linear SVM problem formulation with different normalizations. The
formulation can provide us with more insights and help us under-
stand the connections and differences between different SVMs. The
numerical experiments on both synthetic and real-world data sets
show that the proposed methods can outperform the existing ones
when the number of training samples is not large.
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