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ABSTRACT

In this paper, we consider multi-sensor classification when
there is a large number of unlabeled samples. The problem
is formulated under the multi-view learning framework and
a Consensus-based Multi-View Maximum Entropy Discrim-
ination (CMV-MED) algorithm is proposed. By iteratively
maximizing the stochastic agreement between multiple clas-
sifiers on the unlabeled dataset, the algorithm simultaneously
learns multiple high accuracy classifiers. We demonstrate that
our proposed method can yield improved performance over
previous multi-view learning approaches by comparing per-
formance on three real multi-sensor data sets.

Index Terms— sensor networks, multi-view learning,
maximum entropy discrimination, kernel machine

1. INTRODUCTION
In many applications, e.g., in sensor networks, data is col-
lected from multiple sensors and, given that complementary
information is present within different sensors, classification
using all sensors is expected to yield higher performance as
compared to its single-sensor counterpart [1]. Furthermore,
as class labeling can be labor intensive, in many situations
many training samples may not be labeled. In the machine
learning literature, this problem falls under the framework of
semi-supervised multi-view learning [2], since the partially-
labeled samples are multi-modal in nature and each modality
corresponds to one view of physical event.

Most methods to multi-sensor or multi-view classification
either rely on feature fusion (early fusion) methods, that find
an intermediate joint representation of multiple views [3, 4],
or, on decision fusion (late fusion) methods that combine de-
cisions from multiple models to improve the overall perfor-
mance [5]. Unless the features are optimized for multi-view
aggregation, there is no guarantee that feature fusion will lead
to good classification performance. In this paper, we pursue
a different approach that learns an intermediate model, or a
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consensus view to fuse features from different views, and im-
proves simultaneously the performance of each single-view
classifier. Moreover, we propose to train a set of stochastic
classifiers to handle the large number of unlabeled training
samples.

We follow the principle of the disagreement-based multi-
view learning [2, 6, 7, 8, 9, 10, 11]. In particular, it is shown
in [12] that the error rate of each classifier in the multi-view
system is bounded above by the rate of disagreement be-
tween multiple view-specific classifiers. In other word, the
algorithm that explicitly minimizes the disagreement between
multiple view-specific classifiers would learn a set of compat-
ible classifiers with high performance and low sample com-
plexity. In this paper, we propose a Consensus-based Multi-
View Maximum Entropy Discrimination (CMV-MED) algo-
rithm that learns a set of classifiers, one for each view, by
iteratively maximizing their stochastic agreement on the un-
labeled training data. Our method is based on the Maximum
Entropy Discrimination (MED) by Jaakkola et al. [13]. MED
is a Bayesian learning approach that generalizes support vec-
tor machine (SVM) classifiers and explicitly incorporate the
large-margin training [14] into a unified maximum entropy
learning framework. We show the superior performance of
our model over previous multi-view learning approaches by
comparing performance on three real multi-sensor data sets.

This paper is structured as follows: an overview of the
MED model is given in Section 2 and we propose the general
model for CMV-MED in Section 3. The algorithm for solving
CMV-MED is discussed in Section 4. In Section 5, experi-
ments on a set of real multi-view data sets are discussed.

2. MAXIMUM ENTROPY DISCRIMINATION (MED)

We denote the multi-view data set as DV . DV consists of
the labeled part {(xn, yn), n ∈ L} and the unlabeled part
{xm,m ∈ U}, where L and U represent the index set of la-
beled and unlabeled samples, respectively, and |L| � |U |.
Define the multi-view feature xn = [x1

n, . . . ,x
V
n ],∀n ∈

L ∪ U , where xi
n ∈ Rdi are the features extracted from view

i and V is the number of views. Here we consider the binary
classification task, i.e., y ∈ |Y| = {−1,+1} . Let Di be the

1936978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



set of samples collected from the single view i. In this section,
we focus on the single-view MED on labeled subset L.

For a single view i ∈ [1, . . . , V ], assume the pre-
dictive distribution is a generalized log-linear model, i.e.,
log pi(y|xi, wi) ∝ 1

2y
(
wT

i Φi(x
i)
)
≡ Fi(y,x; wi) and

Φi : Rdi 7→ Rpi is a prescribed feature map defined in view
i. Define the kernel function Ki : Rdi ×Rdi 7→ R that sat-
isfies 〈Φi(x

i
n), Φi(x

i
m)〉 = Ki(xn,xm), for ∀xi

n,x
i
m ∈ Di

in view i and Fi(y,x
i; wi) is the normalized log-likelihood

function parameterized by wi in the kernel space.
Denote the prior distribution of wi as p0(wi). The goal for

Maximum Entropy Discrimination [13] is to learn a post-data
(posterior) distribution q(wi), by solving an entropic regu-
larized risk minimization problem with the prior on model
parameter wi specified as p0(wi)

min
q(wi)

KL (q(wi)‖p0(wi))

+
∑
n∈L

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]
+
, (1)

where [s]+ = max{s, 0}. KL(p‖q) is the Kullback-
Leibler divergence from distribution p to q, i.e.,
KL (q(wi)‖p0(wi)) =

∫
Θ
q(wi) log

(
q(wi)
p0(wi)

)
dwi and

∆Fi(yn,xn; wi) ≡ Fi(yn,x
i
n; wi) − Fi(y 6= yn,x

i
n; wi) =

log
(

p(yn|xi
n,wi)

p(y 6=yn|xi
n,wi)

)
is the log-odds classifier.

The second term in (1) is a hinge-loss that captures the
large-margin principle underlying the MED prediction rule,

y∗ = argmaxy Eq(wi)

[
F (y,xi; wi)

]
.

If we use a Gaussian Process [16] as the prior on wi,
i.e., p0(wi) = N (wi; 0, σ2Ipi), a kernel SVM is obtained
by solving (1) in its dual formulation. For multi-view data,
it is necessary to learn multiple MEDs simultaneously. For
example, in [17], the author applies a joint sparsity prior on
(w1, . . . ,wV ) to achieve multi-task feature selection. Instead
of assuming a joint prior on all multi-view model parame-
ters, we utilize the available unlabeled samples and require
the class prediction of multiple models to agree with each
other.

3. CONSENSUS-BASED MULTI-VIEW MED: A
GENERAL FRAMEWORK

Define the consensus view model as a parameter-
free distribution q(y|xn) ∈ Q on the unlabeled
set U , where xn = [x1

n, . . . ,x
V
n ],∀n ∈ U ,

Q ≡
{
q(x) : q(x) ≥ 0,

∫
q(x)dx = 1

}
and q(y|xn) =

δ {y = yn} , n ∈ L. In each view i, a joint post-data dis-
tribution is obtained as qi(y,wi|x) = q(y|x)q(wi), where
q(y|x) is shared among all views and the above equality
reflects the mean-field approximation.

The goal of Consensus-based Multi-view Maximum En-
tropy Discrimination (CMV-MED) is to simultaneously learn
the joint post-data distributions qi(y,wi|x) = q(y|x)q(wi),
given the priors pi(y,wi|xi) = pi(y|wi,x

i)p0(wi) for xi ∈

Di,∀i = 1, . . . , V. This is accomplished by solving the fol-
lowing optimization problem

min
qi(y,wi|xn)∈Q,

∀i=1,...,V, n∈L∪U

∑
n∈L

V∑
i=1

[
1−Eqi(y,wi|xn){∆Fi(y,x

i
n;wi)}

]
+

+λ
∑
n∈U

V∑
i=1

πiKL
(
qi(y,w

i|xn)‖p0(y,wi|xi
n)
)
,

(2)

where πi ∈
{
πj :

∑V
j=1 πj = 1, πj ≥ 0,∀j

}
is a parame-

ter for view i and λ > 0 is regularization parameter. Note that
qi(y,wi|xn) = δ {y = yn} q(wi) on the labeled set L and
the second term can be further expanded as

KL
(
qi(y,w

i|xn)‖p0(y,wi|xi
n)
)

= KL
(
q(wi)‖p0(wi)

)
+Eq(wi)

[
KL

(
q(y|xn)‖pi(y|xi

n,w
i)
)]

, i = 1, . . . , V. (3)

Substituting (3) into (2), we have the following

min
q(y|xn)∈Q,n∈U

q(wi), ∀i=1,...,V

∑
n∈L

V∑
i=1

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]
+

+λ

V∑
i=1

πiKL
(
q(wi)‖p0(wi)

)
+λ

∑
n∈U

V∑
i=1

πiEq(wi)

[
KL

(
q(y|xn)‖pi(y|xi

n,w
i)
)]
. (4)

From (4), we see that the first and second term learn V view-
specific MED models q(wi), i = 1, .., V, simultaneously.

Our main contribution is the third term in (4), which is
referred as the consensus-based disagreement term on unla-
beled set, since it is zero when view-specific predictive mod-
els pi(y|xi

n,w
i) all equal, i = 1, ..., V , while it penalizes

more when one deviates far from the consensus model q(y|x),
which, by construction, is the center of these V distributions
in the information geometry over the space of probability
measures. This center is determined by information projec-
tion accomplished by the KL divergence in (4). By incorpo-
rating this term, we explicitly require all classifiers to make
similar class predictions having similar confidence levels on
the unlabeled training samples. The benefit for enforcing the
consensus-based disagreement is that the proposed model is
sensitive in the case when view-specific classifiers with low
confidence agree with each other, while it is lenient when all
of them are highly confident and agree. Thus the model is re-
liable in the situation where the initial view-specifc classifiers
only have low confidence results due to the limited size of la-
beled training set. Fig. 1 is a graphical model representation
for the information projection.

4. SOLUTION VIA DETERMINISTIC ANNEALING
EXPECTATION MAXIMIZATION

Our solution for CMV-MED in (4) is based on the determinis-
tic annealing EM [18]. It is described as the following steps:
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Fig. 1: A graphical model representation for consensus-based multi-view
learning via information projection.

1. Set the regularization parameter λ0 = 0 in (4) at initial-
ization and train V independent MED classifiers simul-
taneously to find q0(wi), i = 1, . . . , V . Set the prior
distribution p0(wi) = N (wi : 0, σ2I) and πi = 1

V ,∀i.
Let T be the maximum number of iterations.

2. For t = 1, . . . , T , do

(a) Given the post-data distribution qt−1(wi), i =
1, . . . , V from MED, find the consensus view on
unlabeled data U via information projection, i.e.
qt(y|xn)

= argminq

1

V

V∑
i=1

Eq(wi)

[
KL

(
qn(y)‖pi,n(y|wi)

)]
⇒ log qt(y|xn) =

1

V

V∑
i=1

log pi,n(y|ŵi
t−1)− logZ(xn),

∀n ∈ U,

where qn(y) ≡ q(y|xn), pi,n(y|wi) ≡ pi(y|xi
n,

wi) for n ∈ U , Z(xn) is the normalization factor
and ŵi

t−1 is the mean of the post-data distribution
qt−1(wi), i = 1, . . . , V .

(b) Given the consensus view qt(y|xn),∀n ∈ U , sub-
stitute it into (4) to obtain the following optimiza-
tion problem

min
q(wi), ∀i=1,...,V

∑
n∈L

V∑
i=1

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]
+

+λt
1

V

∑
n∈U

V∑
i=1

Eq(wi)

[
Eqt(y|xn)

[
− log pi(y|xi

n,w
i)
]]

+

V∑
i=1

πiKL
(
q(wi)‖p0(wi)

)
For each view i, compute the qt(wi|Di,αi) with
dual parameter αi = [αi

1, . . . , α
i
L]T by solving the

following dual programming problem, i.e.,

max
αi

1Tαi − σ2

2
(αi)T (K̃i � y yT )αi (5)

s.t. 0 � αi � 1,

where 1 = [1, . . . , 1]T and� is piece-wise product.
In (5), a new kernel K̃i is computed via

K̃i = KL,i

−λt (ki
UL)T

[
1/σ2M−1

i + λtKU,i

]−1
ki
UL(6)

≡ [〈Φ̃i(x
i
n) , Φ̃i(x

i
m)〉]n,m∈L, (7)

where KL,i = [Ki(x
i
n,x

i
m)]n,m∈L,

KU,i = [Ki(x
i
n,x

i
m)]n,m∈U and

ki
UL = [Ki(x

i
n,x

i
m)]n∈U,m∈L. Mi =

diag {ν1, . . . , νU} ∈ R|U |×|U |, with νn ≡
Eqt(y|xn)

[
−∇2

wi log pi(y|xi
n, ŵ

i
t−1)

]
, n ∈ U .

Then the post-data distribution qt(w
i|Di,αi) =

N (ŵi
t,Hi), where the mean is given by ŵi

t =∑L
m=1 ymα

i
mΦ̃i(x

i
n). The covariance matrix

Hi =
(
σ2 I + Φi(XU )T Mi Φi(XU )

)
with

Φ(XU ) ≡ [Φi(x
i
1), . . . ,Φi(x

i
U )]T ∈ R|U |×pi .

(c) Set λt = 1− e−0.5t → 1 as t increases.

(d) t← t+ 1.

3. Finally, make prediction based on consensus view

y∗ = argmaxŷ

∑
1≤i≤V

Eq(y,wi)

[
δ {y = ŷ}F (y,xi;wi)

]
.

Note that the Step 2(b) can be performed in parallel, as it does
not rely on information from other views.

5. EXPERIMENTS

We compare the proposed CMV-MED model with the SVM-
2K model proposed by Farquhar et al. [7], the MV-MED
model by Sun et al. [11] as well as the conventional MED
for each view on several real multi-view data sets. In the
following experiments, we focus on two-view learning, i.e.
V = 2 and use the Gaussian Kernel function Ki(x

i
n,x

i
m) =

exp(c ‖xi
n − xi

m‖2), i = 1, 2. For all MED-based methods,
a Gaussian Process prior p0(wi) = N (0, σ2

i I) is assigned
for view i = 1, 2. The view parameter π1 = π2 = 1

2 . All
other parameters for each model are obtained by 5-fold-cross-
validation. All the experiments are repeated for 20 times, with
randomly chosen L and U .
5.1. Footstep Classification
We test on ARL-Footstep [19, 20] data, which is a multi-
sensor data set that contains acoustic signals collected by four
well-synchronized sensors (labeled as Sensor 1,2,3,4) in a
natural environment. The task is to discriminate between hu-
man footsteps and human-leading animal footsteps. We only
use Sensor 1, 2 in our experiment. It involves 840 segments
from human subjects and 660 segments from human-animal
subjects. We choose 600 segments from each class as the
training set with |L| = 50, and the rest is designated as the
test set. A 200-dimensional mel-frequency cepstral coeffi-
cients (MFCCs) vector is computed from the corresponding
segments in all the views, with normalization as in [20].

In Table 1, we see that our CMV-MED outperforms both
SVM-2K and MV-MED, and it improves over the single-
view MED. This is likely because our method utilizes the
confidence as well as decision as a disagreement measure,
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Classification Accuracy (%) mean ± standard error
Dataset. MED (single views) SVM-2K MV-MED CMV-MED

ARL Footstep (Sensor 1,2,
|L| = 50) 71.1± 5.3 62.3± 10.2 73.3± 5.2 75.6± 6.5 85.5± 6.1

WebKB4 (|L| = 15) 76.6± 10.2 77.1± 10.1 79.0± 10.0 77.9± 8.7 91.7± 5.8
Internet Ads (|L| = 50) 87.3± 0.9 86.2± 1.4 82.5± 4.3 88.8± 2.3 92.7± 0.7

Table 1: Classification accuracy with different data set, with the best performance shown in bold.
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Fig. 2: The classification accuracy vs. the size of labeled set for (a) ARL-Footstep data set, (b) WebKB4 data set and (c) Internet Ads data set. The proposed
CMV-MED outperforms MV-MED, SVM-2K and two single-view MEDs (view 1 and 2) and it has good stability when the number of labeled samples is small.

In ARL-Footstep data, since the signal is contaminated by
background noise, the original MED on two single views does
not perform well, and both the decision regularization and
margin regularization are not as reliable as the confidence reg-
ularization implemented by CMV-MED.

Fig. 2(a) shows the accuracy and the standard deviation
for the four methods as the size of the labeled set increases.
As more ground truth labels are used, the performances of
all training methods increases, while CMV-MED shows its
superior performance consistently.

5.2. Web-Page Classification

The WebKB4 [21] data set is widely-used in multi-view
learning literature [6, 10]. It consists of 1051 two-view web
pages collected from computer science department web sites
at four universities. There are 230 course pages and 821 non-
course pages. The two natural views are words in a web page
and words appearing in the links pointing to that page. We
follow the preprocessing step in [10], and extract a 3000-
dimensional feature vector via the bag-of-words representa-
tion in the page view and a 1840-dimensional feature vector
in the link view. Then we compute the term frequency-inverse
document frequency weights (TF-IDF) features from the doc-
ument word matrix. The feature vector is length normalized.

In Table 1, we see that our CMV-MED has significantly
better performance as compared to SVM-2K and MV-MED,
when the labeled set is small, i.e., |L| = 15. Also, accord-
ing to Fig. 2(b), when more labeled samples are included,
all four methods have similarly good performance, even for
the single-view MED. The CMV-MED performs better with
a few labeled samples because its stability relies on a good es-
timate of confidence on the unlabeled training samples, which
is less affected by the amount of the labeled training samples.

5.3. Internet Advertisement Classification
The Internet Ads [22] data set consists of 3279 instances
including 458 ads images and 2820 non-ads images. The
first view describes the image itself, i.e., words in images’
URL and caption, while the other view contains all other fea-
tures, i.e., words from URLs of pages that contain the im-
age and pages which the image points to. For each view,
we extract the bag-of-words representations, which results in
a 587−dimensional vector in view 1 and a 967−dimension
vector in view 2. We set the size of training set as 600 and
|L| = 50.

From Table 1 and Fig. 2(c) , we see that our CMV-MED
still performs better than SVM-2K, MV-MED and single-
view MED. It is seen that CMV-MED is more stable as the
size of the labeled training set increases, while SVM-2K has
much worse stability performance.

6. CONCLUSION

In this paper, we propose a consensus-based multi-view max-
imum entropy learning model that incorporates large-margin
classification and Bayesian learning when a large amount of
unlabeled samples from multiple sources are available. The
experimental results on three different real data sets show the
superiority of the proposed CMV-MED over other multi-view
large-margin classification methods in terms of classification
accuracy, especially when the number of labeled samples is
small compared to the unlabeled ones.

7. REFERENCES

[1] Ning Xiong and Per Svensson, “Multi-sensor manage-
ment for information fusion: issues and approaches,” In-
formation fusion, vol. 3, no. 2, pp. 163–186, 2002.

1939



[2] Zhi-Hua Zhou and Ming Li, “Semi-supervised learning
by disagreement,” Knowledge and Information Systems,
vol. 24, no. 3, pp. 415–439, 2010.

[3] Pei Ling Lai and Colin Fyfe, “Kernel and nonlinear
canonical correlation analysis,” International Journal
of Neural Systems, vol. 10, no. 05, pp. 365–377, 2000.

[4] Aaron Shon, Keith Grochow, Aaron Hertzmann, and
Rajesh P Rao, “Learning shared latent structure for
image synthesis and robotic imitation,” in Advances
in Neural Information Processing Systems, 2005, pp.
1233–1240.

[5] Stan Z Li, Long Zhu, ZhenQiu Zhang, Andrew Blake,
HongJiang Zhang, and Harry Shum, “Statistical learn-
ing of multi-view face detection,” in Computer Vision
ECCV 2002, pp. 67–81. Springer, 2002.

[6] Avrim Blum and Tom Mitchell, “Combining labeled
and unlabeled data with co-training,” in Proceedings of
the eleventh annual conference on Computational learn-
ing theory (COLT). ACM, 1998, pp. 92–100.

[7] Jason Farquhar, David Hardoon, Hongying Meng,
John S Shawe-taylor, and Sandor Szedmak, “Two view
learning: SVM-2K, theory and practice,” in Advances in
neural information processing systems, 2005, pp. 355–
362.

[8] Shipeng Yu, Balaji Krishnapuram, Harald Steck,
RB Rao, and Rómer Rosales, “Bayesian co-training,”
in Advances in Neural Information Processing Systems,
2007, pp. 1665–1672.

[9] Kuzman Ganchev, João V Graça, John Blitzer, and Ben
Taskar, “Multi-view learning over structured and non-
identical outputs,” in Proceedings of the Converence on
Uncertainty in Artificial Intelligence (UAI), 2008.

[10] Vikas Sindhwani and David S Rosenberg, “An RKHS
for multi-view learning and manifold co-regularization,”
in Proceedings of the 25th international conference on
Machine learning. ACM, 2008, pp. 976–983.

[11] Shiliang Sun and Guoqing Chao, “Multi-view maxi-
mum entropy discrimination,” in Proceedings of the
Twenty-Third international joint conference on Artificial
Intelligence. AAAI Press, 2013, pp. 1706–1712.

[12] Sanjoy Dasgupta, Michael L Littman, and David
McAllester, “PAC generalization bounds for co-
training,” in Advances in neural information processing
systems. 2002, vol. 1, pp. 375–382, MIT; 1998.

[13] Tommi Jaakkola, Marina Meila, and Tony Jebara,
“Maximum entropy discrimination,” in Advances in
neural information processing systems, 1999.

[14] Ben Taskar, Carlos Guestrin, and Daphne Koller, “Max-
margin markov networks,” Advances in neural informa-
tion processing systems, vol. 16, pp. 25, 2004.

[15] Thomas Kailath, “The divergence and Bhattacharyya
distance measures in signal selection,” Communication
Technology, IEEE Transactions on, vol. 15, no. 1, pp.
52–60, 1967.

[16] Carl Rasmussen and Chris Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[17] Tony Jebara, “Multitask sparsity via maximum entropy
discrimination,” The Journal of Machine Learning Re-
search, vol. 12, pp. 75–110, 2011.

[18] Vikas Sindhwani, S Sathiya Keerthi, and Olivier
Chapelle, “Deterministic annealing for semi-supervised
kernel machines,” in Proceedings of the 23rd interna-
tional conference on Machine learning. ACM, 2006, pp.
841–848.

[19] Thyagaraju Damarla, Asif Mehmood, and James
Sabatier, “Detection of people and animals using non-
imaging sensors,” Information Fusion (FUSION), 2011
Proceedings of the 14th International Conference on,
pp. 1–8, 2011.

[20] Nam H Nguyen, Nasser M Nasrabadi, and Trac D Tran,
“Robust multi-sensor classification via joint sparse rep-
resentation,” Information Fusion (FUSION), 2011 Pro-
ceedings of the 14th International Conference on, pp.
1–8, 2011.

[21] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew
McCallum, Tom Mitchell, Kamal Nigam, and Seán Slat-
tery, “Learning to construct knowledge bases from the
world wide web,” Artificial intelligence, vol. 118, no. 1,
pp. 69–113, 2000.

[22] Nicholas Kushmerick, “Learning to remove internet ad-
vertisements,” in Proceedings of the third annual con-
ference on Autonomous Agents. ACM, 1999, pp. 175–
181.

1940


