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ABSTRACT

We introduce an unsupervised optimization method for optimal fu-
sion of multiple classifiers in retrieval problems. The method is
based on a ranking loss called the “clarity” index, which does not
depend on the label of the test instances. The technique optimizes
the weights with which individual classifier scores must be com-
bined to maximize this clarity. Our method is instance-specific;
the weights are optimized individually for each test instance. The
proposed schema can also be used for instance-specific ranking of
classifiers. We also show that the method is highly tolerant to the
introduction of noise in classifier outputs.

Index Terms— Ranking, Retrieval, Classifier Fusion

1. INTRODUCTION

Classification of multimedia data is frequently cast as a retrieval
problem, i.e. that of generating a rank ordering of the entries in a cor-
pus, such that positive instances of the target class in the corpus are
ranked ahead of negative instances [1]. Ranking is by performed by
assigning a numeric “membership score” to the instances, by which
they are subsequently sorted.

The score used to rank the instances is often derived from an
ensemble of classifiers. Multimedia recordings comprise multiple
sources of evidence – video, audio, various forms of embedded text,
meta data, etc., all of which potentially carry information about their
class membership. Each of the classifiers in the ensemble classifies
the instances in the corpus using one or more of these sources of evi-
dence, and generates a confidence score for each instance. This score
may be viewed as an estimate of the probability of membership to
the class that is assigned to the instance by the classifier. The scores
generated by the individual classifiers must now somehow be com-
bined to derive an overall membership score to rank the instances.

The most common method is simply to compute the membership
score as a weighted average of the scores produced by the individ-
ual classifiers [2]. This “classifier fusion” approach has been found
to be surprisingly effective, and even a simple average weighting
scheme, which assigns equal weights to all classifiers, can result in
remarkably robust performance that can be hard to beat. A number
of methods have been proposed in the literature to arrive at superior
estimates of the weights assigned to each classifier [2] [3] [4] [5].
These schemes, however, make a common assumption: they assume
that improved rank ordering can be achieved by improving classifi-
cation accuracy. Thus, the optimization of the weights assigned to
the classifiers in the ensemble is generally performed to maximize
expected classification accuracy.

This assumption is largely valid, in that a perfect classifier would
rank order all positive instances ahead of all negative instances, how-
ever it is not entirely true. From the perspective of optimizing classi-
fication accuracy, a misclassified positive instance that lies at a given
distance from the decision boundary on the wrong side and scores

below only a small fraction of negative instances is no different from
one that lies at the same distance, but scores worse than all of the
negative instances. In a ranking scenario, on the other hand, the first
case, where the positive instance is outscored by only a small frac-
tion of negative instances, is greatly preferable to the latter. Thus,
it is not sufficient to only consider the distance of positive instances
from the decision boundary when optimizing the weights, one must
also consider their ranking relative to the negative instances.

In this paper we propose an alternate mechanism for comput-
ing membership scores from ensembles of classifiers, that explicitly
optimizes an objective related to the expected rank of the instances.
Specifically, we define the match of any instance to the class through
a bipartite ranking loss [6][7], which we term clarity. The weights
are optimized to minimize this loss, and the corresponding loss is
used as the membership score of the instance.

In addition to explicitly considering the optimal ranking as a
criterion to assign class scores, the proposed method has some addi-
tional benefits. One direct benefit is in terms of supervision. Con-
ventional mechanisms for learning fusion weights are usually super-
vised: the weights are learned to optimize the classification accu-
racy of a validation set for which true labels are known. Weights
learned on validation sets are not guaranteed to also be effective for
actual test data [8]. Our proposed method, on the other hand, is un-
supervised; the computation of clarity does not require ground-truth
labels, and we optimize the weights directly on the test data in the
corpus. A second benefit lies in the specificity of the weights to
the instances. Once learned from validation data, conventional fu-
sion methods apply the same set of weights to all test instances in
the corpus, ignoring the variations between the test instances. Our
approach optimizes the weights individually for every test instance.

The latter feature – the fact that we learn instance-specific
weights, also lends itself to a third unexpected benefit, which we
also evaluate in this paper: it automatically provides us with a
mechanism for classifier selection.

Experiments on a multimedia retrieval task show that the pro-
posed membership scoring method can result in better retrieval, as
measured by standard retrieval metrics. It is also able to effectively
identify and deselect noisy classifers when employed for classifier
selection.

The rest of the paper is organized as follows: Section 2 briefly
discusses related work, Section 3 explains our proposed algorithm
and Section 4 shows our experimental results. We present our con-
clusions in Section 5.

2. RELATED WORK

Approaches to classifier combination in multi-classifier systems
broadly fall into two categories. The first combines the scores out-
put by the individual classifiers, while the second aggregates ranks
of instances from individual classifiers. Both of these approaches
have been studied in several works such as [9] [10] [11] [12] [13].
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Of the two the more common approach is that of combining
scores, although the combined score itself may be used to obtain
a final ranking. A generic formalism for combining classifier scores
is Stacking [14]. Stacking involves the idea of actually learning to
combine classifiers optimally, rather than simply taking votes or the
average of classifier outputs. The outputs of individual classifiers are
treated as inputs to a next classification stage which is in turn opti-
mized for the best overall classification [5] [15] [16] [17]. However,
stacking methods which use the outputs of individual classifiers as
features for a next-level algorithm such as a support vector machine
do not explicitly consider ranking as the final objective, a desirable
aspect in retrieval situations.

On the other hand, rank aggregation methods require individual
models to be reasonable; otherwise there could be large variations in
the rankings produced by the individual models resulting in mean-
ingless aggregated rank.

This suggests that both the scores and the relative position of an
instance with respect to other instances, i.e. its rank, must be con-
sidered in the final combination strategy. In our work we achieve
this through the clarity index which we optimize. Another important
constraint of methods that rely on held-out or training data for learn-
ing how to combine classifiers is that the learned weights may not
generalize to actual test instances[8]. Again our method solves this
by optimizing on the actual test data itself, resulting in no general-
ization constraints.

3. PROPOSED ALGORITHM

3.1. Problem Setting

Consider a retrieval problem in which the task is to rank order
the instances in a set Y by their membership to some target class.
To assist us, we possess a set of m classifiers Ci, i = 1 · · ·m.
To any sample instance p, each classifier Ci assigns a score
xi(p) = Ci(p) representing the confidence with which Ci as-
signs p to the target class. We aim to estimate a set of weights wi(p)
such that a weighted combination s(p, {wi(p), i = 1 · · ·m}) =∑m
i=1 wi(p)xi(p) can be used to optimally rank order the in-

stances in Y . For brevity of notation, we will represent the set
of m scores assigned to any instance as an m-dimensional score
vector ~x(p) = [x1(p)x2(p)x3(p) · · · xm(p)]T . We will rep-
resent any set of weights wi, i = 1 · · ·m as a weights vector
~w = [w1 w2 w3 · · · wm]T . Using this notation, s(p, ~w) = ~wT~x(p).
For further brevity, we also drop the “(p)” in our notation. ~x will
now represent both the instances and their score vector.

We will also assume the availability of a set of labeled training
instances X that can be used to help us estimate ~w. X may or may
not be same as the actual training data used to train them classifiers.
In this paper, we set them to be the same. We separate X into X+

representing the set of positive instances in X , i.e. the instances that
belong to the target class and X− representing the set of negative
instances, which do not belong to the target class.

3.2. Relevance, Irrelevance and Clarity Index

Our objective is to compute a membership score r(~x), such that or-
dering the instances in Y by r(~x) may be expected to result in ac-
curate retrieval of Y , such that most positive instances rank higher
than most negative instances. We define the weighted combination
s(~x, ~w) = ~wT~x obtained with a weight vector ~w as the fused con-
fidence score of that instance. Most classifier fusion techniques for
retrieval optimize ~w and simply set r(~x) = s(~x, ~w); however we

will keep the two separate and compute r(~x) from s(~x, ~w). We will
optimize ~w such that s(~x, ~w) maximizes a clarity index, which we
define below, which relates to the ranking of the instances. r(~x) will
subsequently be set to the clarity value itself.

For any instance ~x it is expected that the optimally weighted
score ~wT~x will be high if the instance is actually positive and low if
it is negative. This can be understood by contrasting the test instance
~x to the labeled training instances inX . The weight vector ~w should
be chosen such that the weighted score should outscore as many pos-
itives in X+ as possible if ~x is actually a positive instance. On the
other hand, if ~x is actually negative the weight vector should put ~x
below as many negatives as possible. This intuition is formalized
mathematically as follows.

We define two losses, the relevance loss and the irrelevance loss,
and an index based on these losses [7]. The relevance lossRL(~x, ~w)
for an unlabeled point pu with score vector ~x and weight vector ~w is
defined as the fraction of negatively labeled training instances from
X− that score more than ~x, when the scores are combined using ~w:

RL(~x, ~w) =
1

|X−|
∑

x−∈X−

I
(
~wT~x− > ~wT~x

)
(1)

where I(z) is an indicator function that takes the value 1 if its
Boolean argument z is true, and 0 otherwise.

Similarly, the irrelevance loss IL(~x, ~w) is defined as the fraction
of positively labeled training instances from X+ that score less than
~x, when ~w is used as the weight vector.

IL(~x, ~w) =
1

|X+|
∑

x+∈X+

I
(
~wT~x > ~wT~x+

)
(2)

If the unlabeled instance ~x is actually a positive instance, it is
desired that its relevance loss be low (0 in the ideal case). Also, the
higher the irrelevance loss the more certain we are that ~x is positive.
However, if ~x is actually a negative instance, then the irrelevance
loss should be low, and the relevance loss must be high. These two
factors can be combined into a single index termed as Clarity Index,
which we define as the absolute value of the difference between the
relevance loss and irrelevance loss.

CL(~x, ~w) = |RL(~x, ~w)− IL(~x, ~w)| (3)

Fig. 1: The axis represents combined scores of instances. The red
dots and blue dots represent negative and positive labelled instances,
respectively. The grey dot is a test instance. 6 of the 7 positive in-
stances score less than the test instance, hence the irrelevance loss
is 6/7. None of the negative instances score more than the test in-
stance, hence the relevance loss is 0. The clarity is |0− 6/7| = 6/7.

Figure 1 illustrates the relevance and irrelevance losses and the
clarity index. It is obvious that the higher the clarity index, the easier
it is to make a decision for ~x. The range of the clarity index is [0, 1]
and it is desired for it to be high for any unlabeled instance.

We also define the Raw Clarity Index (RCL) as the difference
between RL and IL. ThusRCL(~x, ~w) = RL(~x, ~w)− IL(~x, ~w) and
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the range of RCL is [−1, 1]. CL is the absolute value of RCL. For
a positive instance we expect the raw clarity index to be negative;
the closer it is to−1 better it is. Similarly for a negative instance the
desired value ofRCL is to be positive and high. In all cases, theCL
value should be high.

We optimize ~w for each instance ~x, by maximizing CL with
respect to w.

~wx = argmax
~w
CL(~x, ~w) (4)

We set the membership score of ~x as the raw clarity score at ~wx:

r(~x) = RCL(~x, ~wx)

Instances are now ranked according to r(~x).

3.3. Estimating ~wx

Direct optimization ofCLwith respect to ~w is intractable in general,
however, because the indicator function I in the definitions of RL
and IL is not differentiable. We approximate it instead by a smooth,
differentiable sigmoid function:

I(t) ≈ Is(t) =
1

1 + e−αt
(5)

By choosing the correct α this function can be made arbitrarily close
to the indicator function I .

Using this approximation, the relevance loss (RL) and irrele-
vance loss(IL) are redefined as

R̂L(~x, ~w) =
1

|X−|
∑

x−∈X−

1

1 + e−α~w
T (~x−−~x)

(6)

ÎL(~x, ~w) =
1

|X+|
∑

x+∈X+

1

1 + e−α~w
T (~x−~x+)

(7)

The raw clarity index is now approximated as ˆRCL(~x, ~w) =

R̂L(~x, ~w)− R̂L(~x, ~w).
The clarity is the absolute value of the raw clarity. The absolute

value function, however, is again non-differentiable and hence un-
suitable for optimization. We optimize ĈL(~x, ~w) = | ˆRCL(~x, ~w)|
instead, using the following approach.

~wmax = argmax
~w

ˆRCL(~x, ~w)

~wmin = argmin
~w

ˆRCL(~x, ~w)

~wx =

{
~wmax, if ˆRCL(~x, ~wmax) > | ˆRCL(~x, ~wmin)|
~wmin otherwise

(8)

Here we simultaneously find find both the maximum and minimum
value ofRCL, and choose the weight for which the absolute value of
RCL is higher. Maximization of RCL is performed with a simple
gradient ascent procedure. Minimization is performed using gradi-
ent descent starting from the same initial location used for the max-
imization. This simplifies an otherwise complicated optimization
procedure for an absolute value function. The weights are also sub-
jected to constraints of ~w > 0, since the classifiers are assumed to
be no worse than random. Moreover, to keep weights from explod-
ing we put the additional constraint |~wT ~w| = 1. This essentially
means that we project the weights on to a hypersphere in the posi-
tive orthant during each update step in the optimization. This overall
procedure can be also be thought of as margin maximization over

clarity measure. We note that the overall algorithm might get stuck
in local optima.

The final membership score r(~x) = RCL(~x, ~wx). Note that we
use the raw clarity RCL value in r(~x). The optimized weight ~wx
can also be used to compute the confidence score s(~x, ~wx) = ~wTx ~x.
The confidence value s(~x, ~wx) too can be used to rank instances. We
also evaluate this in our experiments.

3.4. Ranking and N -best Selection

The learned weights ~wx can be thought of as importance values as-
signed to the primary classifiers. This allows us to choose theN -best
classifiers using the learned weights for each instance. This can be
beneficial when there are a few poor or noisy classifiers, as these
classifiers can in fact be detrimental to overall performance. Our
method, which is instance specific, can be used to discard poor clas-
sifiers for each instance using the estimated weights.

In the experiments below we also evaluate the utility of the pro-
posed method for classifier selection.

4. EXPERIMENTS AND RESULTS

We performed our experiments on a subset of the TRECVID-
MED13 database [1]. The task here is to retrieve videos for dif-
ferent event categories. The primary classifiers were trained using
13 different features including different variations of SIFT, CSIFT,
MOSIFT and STIP features [18][19] for the video components of
the recordings, and Acoustic Unit Descriptors (AUDS) [20] [21] for
the audio component. The primary classifiers are χ2 kernel based
SVMs trained on these features. Thus overall we have m = 13
classifier outputs for each instance. Our training data for optimizing
the classifier fusion was the same as the instances with which the
SVMs were trained. X thus contained outputs of these instances on
the trained SVMs. Overall we used 9232 videos: 5142 in training,
2041 in development and 2049 in test. These videos belong to 10
different event categories namely; “Birthday Party”, “Changing Ve-
hicle Tire”, “Grooming an Animal”, “Parkour”, “Attempting a bike
trick”, “Cleaning an appliance”, “Dog Show”, “Giving directions to
a location”, “Marriage Proposal”, and “Working on a metal crafts
project”. Since this is a retrieval task, several videos in the corpus
do not belong to any of these 10 categories. These videos are thus
negative example instances for all 10 classes.

We report results in terms of Average Precision(AP) for each cat-
egory and Mean Average Precision(MAP) over all categories. The
AP for any event is the average of the precision values for the classi-
fier, when the retrieved ranked list is terminated at any true positive
[22][23][24]. The MAP is the mean of the AP values for all events.

We show results obtained using both, the proposed membership
score r(~x), and the confidence score obtained with the optimized
weights: s(~x, ~wx). We set the learning rate η in the gradient ascent
updates used to learn ~wx to 0.1. As a comparator, we also show re-
sults obtained with possibly the most common conventional fusion
technique in these scenarios, which performs confidence-based rank-
ing based on average weighting. The score used to rank instances is
computed as avg(~x) = m−1∑

i xi. Average weighting is a highly
effective and robust technique and is known to outperform other,
much more sophisticated methods in many problems. On this par-
ticular data set, average weighting was consistently observed to out-
perform weighting schemes where weights were learned by SVMs
and logistic regression classifiers; consequently the performance ob-
tained with these latter, nominally superior conventional weighting
schemes is not shown.
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α in the sigmoid function in Equation 5 is a key parameter. A
high α value makes the sigmoid arbitrarily close to the true indicator
function I(t), but creates several local optima in the objective func-
tion, resulting in increased variance of the estimator. A low α value
on the other hand will result in lower variance but a higher bias. This
parameter can thus have a significant effect on outcome of algorithm.
We show this dependence on the test set for 2 events in Figure 2.

Figure 2 shows that there is considerable variation in perfor-
mance with α. Also, the performance obtained with the best α is
significantly higher than that obtained with average fusion. In sub-
sequent results, we choose α for each event class based on the per-
formance on the development set. The results in Figure 3 show the
MAP values over all event categories. ’AVG’ corresponds to average
weighing, ’WS’ to weighted score s(~x, ~wx) and RCL, standing for
raw clarity, represents retrieval based on the proposed score r(~x).
We see that ranking based on the proposed clarity-based member-
ship score outperforms other methods.

As described in Section 3.4 the learned weights can be used to
select classifiers. We can now evaluate retrieval based on the mem-
bership score, confidence measure and average weighting scores, but
computed now only on the selected N -best classifiers. Performance
(MAP) in this N -best selection schema is shown in Figure 4(a). It
is clearly visible that it is possible to find an N for which the MAP
value is significantly higher than when all classifiers are considered.
This aspect is more pronounced if we look at individual events. One
such example for event Changing A Vehicle Tire is shown in Fig-
ure 4(b). In the plot above N -best RCL-AVG corresponds to r(~x)
computed with N -best classifiers but weighed by average weight.
N -best RCL-WS correspond to r(~x) computed with N -best classi-
fiers weighed by estimated weight(~wx). We also test the robustness
of our method when some of the classifiers are noisy. We do this

Fig. 4: Results on average fusion of N -best scores (N -BEST AVG)
and weighted fusion of N -best scores (N -BEST WS), RCL ob-
tained on the N -best classifiers with average weights (N -BEST
RCL-AVG), RCL on N -best classifiers with estimated weights (N -
BEST RCL-W) as a function of N . (a) Left: MAP of all 10 events
(b) Right: AP for Event Changing Vehicle Tyre (c) MAP values as a
function of N when noise is added to classifier outputs

by introducing noise in the outputs of the classifiers. The outputs
of 20% randomly chosen test points for 3 of the classifiers are cor-
rupted by adding random noise. This obviously results in a drop in
the MAP value. However, using N -best selection methods, much
better results can be obtained as illustrated in Figure 4(c).

5. CONCLUSIONS

Our results show that the proposed clarity-based ranking can outper-
form conventional retrieval based on weighted average scores. Raw
clarity based scoring consistently outperforms others, in both take
all and N -best terms. The overall idea is to maximize clarity mea-
sure and achieved that using raw clarity measure. This works well
in the current set of experiments. The results on individual events
are not shown because of space constraints. The relative improve-
ment for individual events ranged from 0.5%-4% using weighted
scores s(~x, ~wx) and 1.80%-11.57% when ranking is performed us-
ing r(~x). However, we note that for 2 − 3 of the events there is a
slight decrease in performance. This might be attributed to imper-
fect selection of α. Nonetheless, we saw an overall improvement in
MAP using both the weighted score and the proposed index, r(~x).
We also showed the utility of the method in selecting N -best classi-
fiers for each instance. The variation with N is expected. In practice
N may be optimized using a development set. Our method also
demonstrates a significant robustness to noisy classifiers. We note
that classifiers can give noisy results on newer test instances and an
ideal method should be somehow able to use these noisy scores to
achieve good performance. Our method is able to do that as is evi-
dent in the N -best plots in Figure 4(c). A more theoretical analysis
might be able to answer the question of selecting the best α which
still needs to investigated.
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